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ABSTRACT 

The drift rate data derived from a manufacturer's testing 

of 50 inertial grade gyroscopes, is analysed to derive a statistical 

model for  use as a predictor. 

The initial hypothesis of a simple Random Walk is shown to 

be a reasonable approximation to the actual data, and an explanation 

of the discrepancies suggests a more complex model, but basically 

of the same type. 

The simpler Model is then used to generate ttsynthetic" gyro 

drift rate data as an input to a computer simulation of an inertial 

navigator, and the resulting system output e r r o r s  a r e  derived. 

Thesis Supervisor: James E. Potter 

Title: Assistant Professor of 

Aeronautics and Astronautics 
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NOMENCLATURE 

Time 

discrete data time interval = 1 hour = unit of time 
AtO 

i = 0, 1, 2 n 
AtO 

t. = i .  

Drift Rate 

1 

DR Drift Rat e 

MSDR Mean Squared Drift Rate 

DR(ti) Drift Rate a t  the end of the ith interval from the s tar t  of 

the test run. 

Incremental D r i f t  Rate 

IDR Incremental D r i f t  Rate, defined as the difference 

between the Drif t  Rates at one hour intervals. 

Mean Squared Incremental Drift Rate MSLDR 

IDR(ti) = DR(ti) - DR(ti-l) 

D r i f t  Acceleration 

DA 

MSDA Mean Squared Drift Acceleration - 

Ai = IDR(ti)/Ato 

Drift Acceleration, defined a s  IDR /Ato 

E (4 
Est(x) Estimate of E(x) 

S2 
S Estimate of the Standard Deviation u 

Statistical Expectation of the random variable x 

Estimate of the Variance V 

A random process is defined as being Stationary, in this thesis, 

i f  the ensemble Mean and Mean Squared values a r e  time invariant. 

Only te rms  and equations not found in standard statistical texts 

will be explained in detail. 
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CHAPTER I 

INTRODUCTION 

1 - 1 Background 

The output e r r o r s  of modern inertial navigators a r e  usually very good 

indicators of the quality of the gyroscopes in the system. Constant e r r o r s  in 

the gyro output can be handled by a variety of techniques, but the problem of 

random drift e r r o r s  is far more complex. A knowledge of the expected ran- 

d o m  e r r o r s  is highly desirable for  two reasons: 

1) If the random e r r o r s  can be "modelled11, some insight may be gained 

as to the causes thereof, and their subsequent elimination by improved design. 

2) If the future random e r ro r s  can be predicted in a statistical man- 
ner,  then valuable information is  available to help answer such questions as: 

i) the optimum time for external reset  in moving base 

systems. 

the frequency of gyro calibration in fixed base systems, 

such a s  a missile iii stai~dby ~ p e r a t i ~ n .  
ii) 

One such way of representing the random e r r o r s  is  to derive a statis- 

t ical  model, based on the analysis of a large quantity of gyro data. 

1-2 PurDose of the Thesis 

The purpose of this thesis is to analyse a set  of gyro drift test data, 

taken from one particular type of single degree of freedom gyros, for one 

particular orientation - Lnput axis along the local vertical. This is a very 

useful orientation a s  it i s  a difficult one to apply self-compensation techniques 

to, and consequently the gyro output may drift (randomly) over long time 

intervals between corrections . 
The interpretation of the developed models, as to the possibae causes 

of the e r rors ,  is  left as an open question, but the use of a model as a prldictor 

is considered by i ts  application a s  an input to a system simulation. 

1 -3  Summarv of Conclusions 

The initial hypothesis of the existence of a simple Random Walk model 

- 1 -  
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is found to be a reasonable assumption, when compared with the test  data. 

A development of the simple model is shown to explain certain discrepancies 

with the test data, but the precise specification of this more complex model 

is not derived, because the data w a s  not a sufficiently large representative 

sample of the statistical population. 

1-4 Organization of the Thesis 

The thesis is divided into two Volumes, Volume 1 develops the theory 

and tests the Random Walk hypothesis - all the results a r e  presented in 

normalized form o r  with the classified scales deleted . 
the simple model a s  a system input and presents the results of the simulation. 

Chapter 10 identifies the gyro type, and the specific units from which the data 

was derived, together with the "missing scales" from Volume 1. 

* 
Volume 2 applies 

* 
will be found - this is the identification for the value given in Chapter 10 of 

Voi. 2. 

I 

Where, in Vol. 1, a scale has not been shown, a mark with the letter S 

- 2 -  



CHAPTER I1 

STATISTICAL MODEX IN GYRO APPLICATIONS 

2-1 Ideal Sequence of Events 

To investigate fully and develop a statistical model for  a particular 

type of gyro it would be necessary to: 

1) Generate several  data records of the drift rate by test  repetition 

on one gyro, always maintaining the same axes orientation. Subsequently, 

one would analyse the data and derive a statistical model. 

2) Test the model developed in (1) with data taken from several  gyros 

(of the same type), whilst st i l l  retaining the same orientation. 
2' _D_$---+ '1 '  \ - I  
- I  r --- +a+? frnm a different orientation (maybe a varying 

one, e ,  g. ,  f rom a "tumbling" type of servo test) .  

4) Repeat (2) on data taken with the orientation of (3) .  

The procedure above could be continued as long as the data is forth- 

coming, but even then, one would very clearly have to state the conditions 

under which the developed model(s) is valid. F o r  example, if the ultimate 

system application subjects the gyros to some form of base motion not pre-  

sent in the tes t  conditions, then one cannot be sure  of the value of the model 

in predicting system e r ro r s .  

2-2 Pract ical  Analysis of Gyro Drift D a t a  

Unlike a statistical analysis of (say) radar noise, where a wealth of 

data can be made available in a short time, the limitation of the outline given 

in Section 2-1 is, directly, time, and indirectly, cost. Gyro drift is a very 

slowly varying quantity and, in order  to have sufficient data for analysis in one 

r u n  alone, the recording time is likely to be of the order  of days. 

the situation of - many runs - many gyros - many orientations, is ,  to say 

the least, idealistic. 

Therefore 

Consequently, one must specialize the analysis, and in considering 

high precision, costly gyros, the analyst is  usually in the position of having 

to  select data f rom what is currently available. This inevitably means data 

generated for other purposes, (i. e , ,  not for the specific purpose of analysis) 

- 3 -  
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in particular, the only likely source of any quantity is from manufacturers' 

t e s t data. 

This raises the question of the validity of models produced from such 

data. A statistical model is not a precise mathematical formula, and there- 

fore  it is necessary to produce tolerances, confidence intervals, etc. ,  in 

order to express the accuracy of the model. 

analysed must be a true representative sample of the data that could be gen- 

erated, but with manufacturers' data this is unlikely to be the situation. To 

the manufacturer, naturally enough, "time is money" and to continue a test 

over the full specified time when he knows, by observation of trends, etc., 

and from previous experience, that it wil l  fail, is an unlikely occurrence. 

Consequently, the analyst i s  usually only presented with data from gyros 

that have passed the particular test - and this is not a true sample. 

ever, this undesirable situation is somewhat alleviated by the fact that it is 

only these gyros which w i l l  see operational use, so that the derived model 

is st i l l  basically valid f o r  prediction, provided that one states the condition 

appiicabie, i. e. , LIML L U ~ :  ~luC;t=: 1s V Q A A u  blavu- e, L y y  ..------ --- ---, 
- 3 - p - A  r----- 2 p r t i c d a r  t e s t  specification. Lf the model is to be used to give an 

insight into the possible e r r o r  causes, the false boundaries introduced by 

the non-random sample, may lead to incorrect deductions. 

example of the effect of rejection of gyros is suggested in the analysis of 

the Mean Squared Dr i f t  Rate in Chapter 6, para. 2-2. 

To do this, the data to be 

How- 

.. .. - 1 1 3  1-- &,I---,. ----e- - V . l . . : n L  C . r P P P C C f , , l l v  

A possible 

Test data may be broadly categorised into two classifications: 

1) Gyro axes in a fixed orientation with respect to the gravity 

vector. 

Gyro axes in a varying orientation with respect to the gravity 

vector. 
2) 

The data to be analysed in this thesis falls into group ( l ) ,  and it can 

be stated at the outset, that any model developed is unlikely to be applicable 

should the gyro be used in an application of group (2). 

might seem to be a considerable limiting factor, but this is not the case, a s  

many inertial navigation systems a r e  of the type which instrument a navigation 

frame,  wherein the gyros 7 a r e  maintained at a fixed orientation with respect 

to the gravity field. 

At f i r s t  sight this 

- 4 -  



CHAPTER I I I 

DESCRIPTION OF THE DATA TO BE ANALYSED 

3- 1 Test Configuration 

The data to be analysed consists of a number of gyro runs performed 

by one manufacturer in meeting a certain test  specification. 

is conducted in a vertical earth-reference servo connection, with the gyro 

Input axis orientated along the gravity vector, as shown in Fig .  3-1. The 

drawing is simplified to show the basic features - for more detail on typical 

test  installations, and construction of single degree of freedom gyros Ref- 

ences 1 and 2 respectively, a r e  suggested. 

Each drift run 

With no input current to the lorque generaiwr, iLt: 6yi-v SGZUZZ tk=z 

vertical component of earth 's  angular rate with respect to inertial space, 

thereby producing an output from the signal generator, to cause the test  

table to rotate accordingly. The table wil l  also rotate due to miscellaneous 

torques acting on the gyro, both constant and random, caused by a variety of 

sources (e. g. mass unbalances, lack of rigidity, e tc . )  The particular advan- 

tage of the test  orientation is that gravity induced torques remain constant 

and can therefore, be virtually eliminated by calibration procedures, by 

applying a constant compensation current to the gyro torque generator. 

effect of earth 's  rotation i s  removed in a similar manner and therefore, 

after this compensation, any motion of the test  table w i l l  be due to small  

fluctuatirg torques acting on the gyro (which can usually be considered ran- 

dom in nature). 

The 

The measurement of the drift e r r o r  to a high enough degree of 

accuracy can only be achieved by an angular measurement; in this case  a 

signal f rom the Table Tracking Microsyn, proportional to angle, is  fed to a 

Recorder to give a continuous presentation of the Drift angle, relative to 

some arbi t rary datum position. However, in analysing a system perfor-  

mance, the vector quantity of drift ra te  is always considered as the input 

e r r o r  source, consequently it must be computed from the gyro test output. 

The procedure used i s  the very simple one of differencing the Dr i f t  angle 

over  hourly intervals. 

- 5 -  
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This is the form of the data to be analysed and one can see a t  the 

outset, a possible source of e r ror ;  namely, the data strictly represents the 

Incremental Drift Angle over one hour steps, and this can only approximate 

the average Drift Rate over one hour intervals. 

not observed, but assurance was given that the Drif t  Angle w a s  smoothly and 

slowly varying, so that it is presumed that the e r r o r s  in the approximation 

are, in general, small. Attention will be drawn later to certain specific 

points on some gyro runs, where this assumption is probably not a good one 

- these points a r e  few in number, 

The actual pen records were  

3-2 Test Method 

The total test  time for each run is  70 hours, of which the f i r s t  10 

hours is a calibration periad. 

compensation current is applied to the Torque Generator, based on a know- 

ledge of earth 's  rotation and gyro a r i i z s  aue GO iuiuwri L U L L ~ ~ Q ~ L ~  e L i - ~ z  t ~ r q z c z .  

A correction is made to this estimate after 10 hours running, based on obser- 

vations of the data record to date; and, with the assumption of only short t e r m  

t r ans i en t s , ,  the time of this "cutt1 i s  considered as time zero for the drift test  

proper,  over the remaining 60 hours. The calibration correction is obtained 

DY co~~lpiit-ing the average cf the drift  r i t e s  (Increm-ental drift angle) over 10, 

one hour intervals. 

Initially, a "best estimate" of the required 

1. 

The test  parameter (see Chapter 2, para.  1) during this phase of the 

manufacturer's evaluation of the gyro, is the Root Mean Square (RMS) of the 

Dr i f t  ra tes  a s  computed over the 60, one hour intervals. 

value is referred to as the "Figure  of Merit" (FOM) for  the gyro. 

This calculated 

i. e. 

where 

2 

i = l  

DRi = computed average drift rate over the 

I 1 i t r  th one hour interval. 

(3.1) 

- 7 -  



3-3 Initial Observations of the D a t a  

The data as supplied, consisted of hourly tabulations of the computed 

drift rate for 50 runs, each run being for a different gyro. 

all of the same type of single degree of freedom gyros and will be simply 

indexed by the numbers 1 to 50 in the remainder of Vol. 1 - identification 
of the type of gyro, and the manufacturer's unit number is given in Chapter 

10 of Vol. 2. In addition to the tabulated data, a simple graphical plot was 

provided, allowing a quick visual observation to be made of any obvious 

irregularities, etc. 

data points w a s  available for the analysis. 

ple, but as wi l l  become evident in later chapters, this is not the case, as a 
relatively small  number of "irregular1f points can have a marked effect on 

the calculation of certain statistics. 

The 50 gyros were 

Thus, excluding the calibration data, a total of 50 x 60 
This might appear to be a large sam- 

The f i rs t  general impressions of the data were: 

1) Many of the gyro runs show a steady rate of change of the drift 

rate (a ramp), with perturbations about this mean slope. Thus, in these 

cases,  the data gives the appearance of being somewhat less  random, but 

more  determmlstlc, than one wouia nave wished fer at the start cf =. static- 
tical analysis. 

occur, shows that the ramps themselves, appear to be random in nature. 

2) Differencing of adjacent drift rate values (i. e . ,  the incremental 

. 1 .  

However, comparison of these ramps in the runs where they 

drift rate over one hour intervals) does show a very random pattern. 

3) Nine, out of the 50 gyros, have a Figure of Merit equal to the 

specification tolerance. 

wonders *hat figures would have been achieved if  the test runs had been 

repeated on those same nine gyros. 

h Ghapter 2, para. 2, of incomplete samples, should an attempt be made to 

link any model developed to  the possible on&s of the drift e r rors .  

This seems a rather large proportion and one 

This further supports the doubt expressed 

4) Gyros, Nos. 6, 45, and 47, exhibit particular features which are 

not readily observable in the other gyros. 

i) Gyro No. 6 - considering the full 60 hour run and the 10 

hour calibration period, this gyro shows far greater fluc- 

tuations than any of the other gyros. 

Gyro No. 45 - from time 11 to 15 (5 points) the drift rate 

shows a marked change in magnitude, from the values 
ii) 

- 8 -  



on either side of this range. 

Gyro No. 47 - a t  time 12 and 13 (2 points) the magnitude of 

the drift ra te  is approximately three times that of any other 

points in the run. 

iii) 

In the case of gyro 47, and to  a lesser  extent gyros 6 and 45, if the 

values have been obtained by differencing the tes t  table angles a t  one hour 

intervals, they a r e  likely to be considerably in e r r o r  from the  t rue drift 

rate at the specified times. It is further hypothesised, for gyros 45 and 47 

only, that these values may well represent some sudden change, either in 

the test  conditions, o r  due to some external influence. 

All the data has been used in the analysis, as supplied - i. e . ,  no 

modifications have been made on the basis of unlikely values in small  

samples. Consequently, attention will be drawn to calculations which a r e  

heavily dependent on these 3 gyros, and alternative values a r e  given with 

certain points eliminated. 

- 9 -  
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CHAPTER IV 

THE MODEL HYPOTHESIS 

4- 1 General Considerations 

Two different approaches can be considered in the analysis of test 

data and the subsequent derivation of a statistical model. 

1)  F i r s t  select a simple model to be tested - the hypothesis - 

the choice of a likely model would obviously be based on the experience gained 

from other work in the same field, and on one's own initial interpretation of 

the data. 

evaluate this model, conduct the tests on the available data and a s ses s  the 

results . 

Then promulgate a s  many tests as a r e  considered necessary to 

I - 

If there is sufficient evidence to support the initial hypothesis, the 

job is complete; however, more likely is  the situation where some test 

results a r e  not adequately explained by the hypothesis. In this event,one 

has tc cansider v.7 h e t h e r  tc s t a r t  2 g a k  *....ith a different type of x?lodel, o r  

whether to follow up the initial hypothesis with a somewhat more complex 

model, but basically of the same type. 

2) The alternative approach is  to fully analyse the data, without 

any preconceived ideas, then to test the feasibility of the results to support 

different types of statistical models. 

The second method is  clearly the more unbiased (and time consuming) 

approach, which is a very strong point in its favour when one considers that 

the science of statistics is more of an a r t ,  and that preconceived ideas can 

usually be supported by statistical "evidence1'. Nevertheless, in this thesis 

the first approach has been adopted because there is evidence to support a 

likely initial hypothesis. 

ful l  presentation of the test  results i s  given, good and bad, in order that the 

line of inductive reasoning, subsequently developed, can be contested in open 

court! 

In order to avoid the pitfalls stated previously, a 

4- 2 Fundamental Assumptions 

Three basic assumptions a r e  implied in the analysis that follows: 

- 10 - 
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1) The data represents Rate e r r o r s  due to the gyros alone, i. e . ,  it 

is not contaminated by e r r o r s  introduced either by the test  methods o r  the 

test equipment. 

2) 

3) 

Gyro drift can be considered as a random process. 

The discrete data to be analysed represent samples from the 

same stat is tica 1 population. 

The only justification for assumption (1) is that since the test  equip- 

ment was designed specifically for this type of gyro, one should not have to 

consider it as a source of e r r o r  at the s tar t  of an analysis. 

Assumption (2) can only be supported in retrospect. Should a deter- 

ministic trend (e.g. a steadily increasing mean drift rate, due perhaps to 

the ramping noted in Chapter 3,  para. 3 (1) ) be observed, then the 

assumption would only be valid after mathematically removing the trend 

from the data. 

Assumption (3) implies that the gyros a r e  very uniform in construc- 

pion, so that a sample consisting of one run on each of 50 gyros, is equiva- 

lent to a sample of 50 runs on one gyro. In less  precise gyros one would be 

unwise to make this assumption, and even with these high tolerance instru- 

ments it must be applied with caution (Chapter 7 ,  para. 3 investigates one 

possible breakdown of this assumption). To clarify the importance of this 

assumption further, if it is not valid, then one effectively has a sample of 

one run only for each of 50 statistical populations, differing to various 

degrees on which to base any conclusions. 

4- 3 Motivation for the Model Specification 

F r o m  a review of the somewhat limited amount of literature avail- 

able in this field, there w a s  evidence to support a "Random Walktt type of 

model (e. g. Refs. ( 3 ) ,  (4) and (5) ).  

validity of this model to the particular gyro data under investigation here. 

4-4 A Simple Random Walk 

It was therefore decided to test the 

It is  not intended in this thesis to develop fully the theory applicable 

to simplified Random Walks; only relevant steps to  support the tests actually 

selected w i l l  be given in detail. 

type of model to gyro drift analysis, reference could be made to Ref. (6). 
In order  to illustrate the concept of the random walk the description given in 

F o r  more detail in the application of this 

- 11 - 



the introductory remarks of this reference is reproduced here,  with the 

permission of the author. 

"Simplified Random W a l k  Process:  This model consists of a man 

who has been placed in a very long corridor. 

that at  the end of each minute he must take one step forward, o r  one step 

backward, o r  remain in whatever position he is in. It i s  further demanded 

that his decision be completely random with an equal likelihood assigned to 

each of the three alternatives. 

any of the one minute intervals is: 

minus one step per  minute (backward) 

F o r  purposes of simplification, it i s  further assumed that the man's ra te  is 

constant over any one minute interval. It 

The man has been instructed 

Thus, the average rate of the man during 

plus one step per  minute (forward), 

o r  zero steps per minute (remain). 

4-5 The Model Hypothesis (see Nomenclature and Definitions on Page vii .) 

The model to be tested is similar, but not as simple, a s  that out- 

lined in 4-4. F r o m  the first  inspection of the data (Chapter 3, para. 3) 

the Drift Acceleration (defined as the Incremental Drift Rate /step interval, 

and not the true acceleration) exhibited a very random pattern, whereas the 

Drift Rate w a s  less  random in nature. 

average of the Mean Squared Drift Rate a t  various times during the test  

runs, suggested that this statistic was  likely to be time-varying. 

therefore hypothesised that the Drift Acceleration was a stationary random 

process and the Drift Rate a non-stationary random process. 

A rough check of the Ensemble 

It was 

The model, so far, conforms to that of Chapter 4, para. 4, when the 

derivatives a r e  considered, i. e . ,  the Drift Acceleration is compared to the 

ra te  at  which the man walks, and the Drift Rate to the position of the man 

corresponding to an integral number of step intervals from the commence- 

ment of the walk, where the unit of time is  now one hour. 

indeed be fortuitous if the Drift Acceleration could be modelled by steps of 

equal, but opposite magnitude, o r  zero; therefore the model condition will be 

that the Expectation of the Mean of the Drift Acceleration (E(A) ) is zero, and 

that the acceleration step amplitudes a r e  statistically independent. 

However, it would 

This model is illustrated by a typical picture in F i g .  4-1, together 

with the Drift Rate resulting from this process, and is now summarized. 
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1) Drift Acceleration, as  typified by A. in Fig. 4-1, is a stationary 
1 

random process, with: 

E(A) = 0 (4.1) 

E(A) is obtained from the ensemble average over an infinite num- 
ber of gyro runs at any time, t.  Also, by applying the ergodic hypothesis 

because the process is stationary, 

E(A) = Limit q n Ai = 0 
n + o o  i = l  

( 4 . 4  

for each individual gyro. 

2) The discrete values of the Drift Acceleration a r e  statistically 
independent, 

Therefore (4. 3) 
2 E(A.'A.) = E(A ) : d i j  

1 J  

i = j  

' i j  o i # j  
where 

4-6 General Comments on the Model 

It should be noted that the drift acceleration is defined as the 

incremental drift rate (IDR) divided by the time interval ( Ato) ,  and that 

Ai*Ato = DR(i- A t o )  - DR( (i-1)- Ato) 

The step interval A t  = 1 hour, so using this a s  the basic time 
0 

unit, the Drift Acceleration is numerically equal to the IDR over the rri" th 

t ime interval. 

The Dr i f t  Rate is shown a s  discrete values in Fig. 4- 1. One might 

infer from the drift acceleration that the continuous drift rate is being 

modelled, but this is not the case as the data to be analysed is in discrete 
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form, hence the model is only applicable to the Drift Rate a t  one hour 

intervals. 

one can make of the drift rate between the discrete time intervals. 

The dotted lines shown on F ig .  4-1 represent the only estimate 

As the Drift Rate is generated by a summation process, its value 
will depend on an initial condition DR(t = 0). Since this is arbi t rary it 

will be specified for  convenience as being zero. 

4-7 Compatability of the Model with the Initial Inspection of the Data 
(Chapter 3- 3 )  

In Chapter 3 ,  para 3 (4), it w a s  noted that certain gyro runs had a 
few "odd" points. 

type of statistical frequency distributions that might be encountered, in 

order that the significance of these points can be analysed. 

Cne would like therefore, to have some knowledge of the 

The many possible sources of e r r o r  present in such a complex 

instrument leads to the prediction that the Drift Rate values w i l l  be 

Normally distributed. 

since the Drift Rate can be considered as the mean of many small  e r ro r s ,  

and the distribution of the means approaches aNormal distributian. 

consider the Model, and although it is not specified it is nevertheless im- 

plied, that the model drift rate wi l l  tend to a Normal distribution. (Note:- 

the LDR wi l l  have the same distribution as the drift acceleration; there 

being only a constant factor At 

This follows as a result of the Central Limit Theorem, 

N.ow 

relating them). 
0 

Therdore one might consider at the outset, plotting the frequency 

distribution of the drift rate data, to investigate if any of the data points 

could reasonably be rejected. 

drift rate is non-stationary, therefore only the ensemble distributions at a 

particular time can be considered (i. e . ,  both the Mean and the Variance of 

the Normal distribution could be time varying). Thus a sample would con- 

sist of only 50 points, one from each gyro, and this is too small to consider 

rejection limits at the s ta r t  of an analysis. As was stated previously, none 

of the original data points were modified. 

However, the model has specified that the 

The other feature, from the initial observations, was "ramping" of 

the Drift Rate. 

random walk model, as, although the Expectation of the drift acceleration 

Under certain conditions this is not incompatible with the 
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has been specified as zero, there is no reason why the actual drift acceler-  

ation should not be a value of (say) one Standard deviation away f rom the 

Mean, for certain lengths of time. This is equivalent to a ramp, and there- 

fore the drift acceleration (or the IDR) distribution must be obtained and the 

distribution statistics compared with the data drift acceleration, before the 

data could be rejected on this basis. Nevertheless, one must still be mindful 

of the possibility that the ramping may be due, in part, to some deterministic 

non-random process. 
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CHAPTER V 

TESTLNG THE MODEL - THEORETLCAL DEVELOPMENT 

5-1 The model, a s  specified by equations (4. 1) to (4. 3), implies certain 

statistical properties which can be used to test the degree of support of the 

data to the model. The theory in this Chapter and the results in Chapter 6, 
a r e  presented in the order  that the tests were conducted (not necessarily 

the best order  - in retrospect). 

5-2 Drift Rate - Stationarity Test 

5-2-1 Expectation of the (Mean) Drift Rate 

F rom F i g .  4-1: 

n 

DR(tn) = 2 AieAto 

i =  1 

F r n n r t  ,I = 1 ? A:At 1 - L--" n' J 
i =  1 

but, Expectation of a Sum = Sum of the Expectations 

i.e. E(a t b t e . )  = E(a) t E(b) t e * * *  

n 

therefore, E[DR(tn)] = c L E('li*AtO) 
i =  1 

but, Ato is a constant, and from equation (4. l ) ,  E(A.) 1 

the ref o r  e 

= 0 

E [DR(tn)] = 0 

but this is true for any value of n 

hence E[DR] = 0 
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. 

5-2-2 Expectation of the (Mean) Squared Drift Rate 

From equation (5.1) 

n - n 2 
[DR(tn)] = 2 AiAto 2 A. J 4to 

1 =  1 j = 1  

n n  
7 -  

the ref o re E [DR(tn)] = E [t A. 1 J  A. (Ato) 
i = l  j = 1  

2 

Using equation (4. 3) and equation (5.2) , and with At 0 constant 

E I DRlt,) L J 
= n e  E(ALAtz 

= n9Ato but tn 

and 

and 

E[DR(tn)] = E [MSDR(tn)l 

E ( A ~ )  = E(MSDA) time invariant for a 
stationary process 

therefore E fMSDR(t)] = E(MSDA)- t - Ato (5. 5) 

or ,  since the Drift Acceleration has been defined as the rate of change of 

the Incremental Drift Rate, 

(5.6) t 
E [MSDR(t)] = E(MSIDR)* - 

AtO 

i. e. E [MSDR(t)] = kat (5.7) 
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where k is  a constant and, with unit time as the step interval of one hour, 

is  numerically equal to E(MSIDR); and t is  an integer number of step intervals. 

Thus, a s  stated earlier: the Model drift rate is a non-station- 

ary process as, although the Mean is zero, the Mean Squared value increases 

linearly with time. 

The Est(k) will be defined in the tests as the estimate of the 

slope of the MSDR/Time plot, and it is clearly the basic clue as to the validity 

of the Random Walk hypothesis. 

wi l l  just be written as k. 

F o r  simplicity, the Expectation of Est(k) 

5-2-3 Estimates of the D r i f t  Rate Statistics 

Since the model predicts a non-stationary process, Ensemble 

averages, and not Time averages, must be considered. 

J r = l  

where r re fers  to Gyro number r ,  drift run 

and R = totalnumber of drift runs = 50 

As a computer was used for all calculations the statistics of 

Drift Rate Variance and Standard Deviation were also evaluated (see Nomen- 

c latur e) . R 

L 
- 

- Es t  i DR(t - ] I 2  ) 

2 r =  1 
s (tn) = R- 1 

(5.10) = [Est[MSDR(t n ) ]  R- 1 
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(Reference can be made to any  standard statistical text for  the proof of 

equations (5.10) and (5.11). ) 

It should be noted that since, 

E(DR) = 0 (5.3) 

Population Variance V = E b2(t,) J = E [MSDR(tn)] 

Population St. Dev. Q =&W 
(5.12) 

(5.13) 

5-2-4 Acceptable Limits Based on the Model Hypothesis 

Consider that E [h4SDR(t)] 

This implies from equation (5.7) that k is  also known, and 

i s  known. 

from equation (5.13) - 
u(t) = 4 k . t  (5.14) 

But, from Chapter 4, para. 7, it  was  shown that the model 

predicts that the Drift Rate at any time tn will tend to be Normally distri- 

buted, and f rom equation (5.3) the expectation of the distribution Mean is 

zero. Therefore the probabilities associated with the Normal distribution 

can be considered, viz. 

(5. 15) I 68% probability that DR(t) lies within * t ( t )  of zero 

95 .' 570 I1 :: DR(t) * 2u(t) 11 I t  

99.7470 !! li DR(t) 'I I' *3u(t)'! ** 

6870 probability that Es t  DR(t) is within f * of zero 
A I 7  

11 Est  DR(t) is  within i2 - d t )  It 'I (5. 16) 
K 

95. 570 
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For  large sample sizes, i. e . ,  large R, it can be shown that the Distribution 

of Es t  MSDR(t) also approaches a Normal distribution, 

with a Variance 
4 - 2.0- (t) 

R 
- 

and a Standard Deviation = v2(t)dz 
The ref ore  : 

,r 
6870 probability that Es t  is within f ( t ) -  '- of 4 l R  
E [MSDR(t)j etc. 

(5. 17a) 

(5, 17) 

5-2-5 Acceptable Limits Based on Estimated Statistics 

In general u(t) will not be known, only the Es t  CT (t), i. e. S(t), 

will be available from calculations. Fo r  large samples equations (5.16) and 

(5. 17) can be modified to the following statements, to a reasonable approxi- 

mation. 

6870 probability that E[DR(t)] is within *a of Est[DR(t)] (5.18) m 
ctc. 

6870 probability that E [MSDR(t)] is within * S  (t) E of J2' 
E s t  [MSDR(t)] (5. 19) 

T e rmino logy : 

(i) - s(t) i s  called the Standard E r r o r  of the Mean. 
4 E  

(ii) S 2 ( t ) a A K i s  called the Standard E r r o r  of the Variance, and since 
1 

in this situation E(DR) = 0 ,  it could also be called the Standard 

E r r o r  of the MSDR, 
(iii) 2 Standard E r r o r s  of the Mean = 2 e - s(t) 

4 3  
etc. 
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5-2-6 SamDle Size 

The equations given *h 5-2-4 and 5-2-5 a r e  only valid for 

large sample sizes. 

consider Student9 s rptg' distribution and Chi-Squared distribution, instead 

of the Normal distribution in establishing the probability limits for the 

Estimated Mean and Mean Squared values, respectively. In this analysis 

the Sample size, for ensemble calculations (R), is 50. This number might 

be described as the I f i n  between:' sample size, neither large nor small. 

For no other reason than simplicity, it w i l l  be categorized a s  a large 

sample in the subsequent analysis. 

F o r  small samples, it would have been necessary to 

5-3 Drift Rate - Figure of Merit Test  

In Chapter 3-2 the test parameter of the RMS value of the Drift 

Rate af ter  60 hours, w a s  defined as  the Figure of Merit. 

is now generalized to any discrete interval time t 

modified, for the Random Walk model, to: 

If this parameter 

equation (3. 1) can be n' 

F r o m  equation (5. 5) it follows that, 

2 
E[DR(ti)] = E(MSDA). ti 0 AtO 

Therefore, combining equations (5. 21) and (5.2) with equation (5. 20) 
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E FOM(t ) [ n I 2  

n 
2 = E(MSDA) (Ato) 

2 n  = E(MSDA) (Ato) 2 

--• - E(MSDA) t Ato 
2 n 

In the terminology of equation (5.7) 

1 2 
E[FOM(t)] = Z k * t  

(5.21) 

(5. 23) 

2 i .  e. the slope of the (FOM) /Time plot is a half the slope of the (MSDR) /Time 

plot. 

The E[FOM(t)] is a more complex expectation to evaluate, but to a 

first approximation, it will be proportional to r .  The ensemble estimate 

of (FOM) is given by: 2 

1 [DlX(t$] (5. 24a) 
r r = l  i = o  

and Est(F0M) by, 
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5-4 Incremental Drift Rate - Stationarity Test 

F rom equation (4.1) 

E(IDR) = Ato* E(A) = 0 

From equation (4. 3) 

(5. 25) 

(5. 26) 

i. e.,  Incremental Drift Rate is a stationary process. 

Estimates a r e  similar to equations (5.8) and (5. 9) for Drift Rate, 

viz . 
R 

r = l  
(5, 27) 

The ensemble estimates when plotted against time should be a straight 

line with zero slope if the model is valid, but, since a stationary process 

is being tested, time averages can also be used for additional confirmation 

if  cecessary.  

5-5 Incremental Drift Rate - Correlation Test 

Since the model specified that the Drift Acceleration in any given step 

interval, was to be independent of that during any other interval, the same 

must be applicable to the LDR. 

The model LDR is a stationary process, therefore a measure of the 

independance can be derived by calculating the Autocorrelation Function 

(ACE') over time, where, 
I- -i 

ACF(ti, tj) = E LIDR(t.) LDR(t.) J 
1 J 

= (At:) * E[A(ti) A(tj)] 
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Therefore, from equation (4. 3) 

2 
" i j  

ACF(ti, tj) (Ato) E(A2) 

= E(MSKDR) 6 i j  

F o r  a stationary,ergodic process the ACF is not dependent on the 

absolute values of t. and t but only on the the time difference T (= t - ti).  
1 j '  j 

E(MS1DR) when7 = 0 

0 when7 # 0 
i. e. ACF(7) = (5.29) 

F o r  discrete data, with zero mean, the estimate is given by, 

{IDR(t$ . KDR(ti t n -Ato) 

N-n - 
1 

i = l  

Equation (5.30) can be evaluated for each gyro drift run, where N 

is the total number of points in the run ( N =  59, a s  60 Drift Rate points can 

only give 59 IDR values), 

the value of n, the fewer a r e  the number of terms in the summation and con- 

sequer,tly the poorer the estimate of the ACF. Even with n =  0 ,  the estimate 

is still only based on 59 terms,  therefore, in an effort to improve this 

accuracy, the Ensemble estimate can be considered, where 

It can be seen from equation (5.30), that the larger 

R - 
Ensemble Es t  [ACF(n)] = 2 E s t  [ACF(n)] r 

r = l  

(5.31) 

where 

and R = 50 

r signifies the ACF of the rth data run 
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Notes: - 
i) As the samples, both in time, and number of runs, a r e  

neither very l a rge ,  it would be wise to compare the gen- 

e ra l  trend of equation (5. 31) ,  over the range of n selected, 

with each of the 50 separate trends obtained from 

equation (5.30), hefore deciding that equation (5. 31) is 

this best estimate. 

The P1pre-requisitel! for  the ACF equations given above, 

is that the IDR has been proven to be a stationary pro- 

cess  (Section 5-4). 

_. 

ii) 

5-6 Frequency Distributions 

5-6-1 Drift Rate 

In Chapter 4, para. 7 ,  the expected ensemble Drift Rate 

distribution was shown to be a Normal  distribution, but, because the para- 

meters  specifying the distribution a r e  time varying, the estimate of the 

data distribution canonly contain one point from each gyro. 

points is too small for any accuracy in a histogram presentation. 

A total of 50 

5-6-2 Incremental Drift Rate Distribution 

If the tests of Sections 5-4 and 5-5 a r e  satisfactory, i. e. 

the IDR is  a stationary, independent over one hour intervals, process - 
then there a r e  59 independent points in each of the 50 gyro runs, 

gyro run is clearly independent of any other run, and, since a fundamen- 

tal assumption was  made that all data is f rom the same population, there 

will be 2,950 independent data points. Consequently, a very useful histo- 

gram can be drawn to indicate the expected IDR distribution. 

Each 

Should the IDR be shown to be stationary but (say) corre- 

lated over one hour intervals, then one would have to use every other point 

in estimating the sample, as the total number of independent points would 

have been reduced by a half. 

Section 5-5, the poorer wi l l  be the estimate of the IDR frequency distri-  

bution. 

Thus, the longer the correlation in the test of 

Although, in the Model specification, a knowledge of the IDR 

distribution was not required, it was nevertheless considered not unlikely 

that it would be Normally distributed. 

this may well not be the case. 

As it will transpire (Chapter 6, para. 7 ) ,  
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5-7 Drift Rate Correlation 

5-7-1 Expectation and Estimation 

If for  the Model, the Drift Rate Correlation (COR) is defined 

as, 

then 

but 

COR(tm, tn) = E[DR(tm) DR(tn)] where n - > m 

A.At }] 
J O  

j = m t l  
COWm, tn) 

( 5 . 3 2 )  

3 
n 

A.Ato L J 
j = m t l  

i =  1 

therefore, from equations (4. 3) and (5.2) 

1 n - m r -  

therefore, f rom the analysis in Section 5-2-2, 

COR(tm, tn) = E[MSDR(t m )] = k't, 

for  all n - > m 

(5.33) 

(5,34) 

i. e. F o r  a given tm, COR(tm, tn) is a constant for all n > m (5 .35)  

To obtain an  estimate of the Drift Rate Correlation, ensemble averages 

must  be used (non- stationary) 
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.Therefore 

1 Es t  COR(tm, tn) 

r =  1 

(5. 36) 

th where, as before, r refers to the Drift Rate during the r run 

and R = total number of runs = 50. 

5-7-2 Acceptable Limits 

To evaluate the Drift Correlation of the data, the results ob- 

tained in equation (5. 36) can be plotted as a family of curves, each representing 

a selected tm and varying tn (> - tm). 

straight line with zero slope, and the height of the line being equal to k. t 
(equation (5. 34) ),  where k is numerically equal to the expectation of the slope 

of the MSDR/Time plot. 

necessary to.examine what would be acceptable as support for the Random Walk 

hypothesis. 

Theses curves should approximate to a 

m 

However, the sample size is only 50, therefore it is 

If limits are based on the model hypothesis and the model popu- 

lation parameters are assumed to be known, then for the random variable x, 

where 

n > m  (5. 37) x = DR(tm) * DR(tn) - 

E(x) = COR(tm,tn) = k * t m  (5. 38) 

1 f A.Ato 
J 

j = m t l  

t E [ DR(t ) A.A.(Ato)2 1 J  

i = m t l  j = m t l  

(5.39) 
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Now consider the 3 t e rms  in equation (5.39) 

If the DR(t ) i s  Normally distributed (Chapter 4, para.  7 with m 2 Variance u and Mean, zero,  then 

4 
= 3 u  

but, f rom equation (5.12) 

u2 = E[MSDR(t m )] = k-t, 

2 2  therefore = 3 k tm . 

By a similar analysis used in equation (5.33) it follows that 

E 

(5.40) 

(5.41) 

Also, i 
i 

n n n 

= E[DR(tm)2]- E[ 2 2 A.A.At:] 1 3  

i = m t l j = m t l  

2 which, f rom equations (5. 5) and - - k tm (tn-tm) 
and (5.7) 

(5.42) 
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Combining equations (5.40), (5.41) and (5.42) with (5.39) 

2 2 2 
E ( x )  = 2k t 'tk t t 

m m n  

Therefore Variance (x) = E(x2) - b ( x )  J2 

which from 

equations (5.38) and (5.43) = k2 t (t t tn) m m  

(5.43) 

COR(tm, tn)] a s  given in equation (5.36) is a summation of 50 
values of x, 

the ref ore ,  

Variance(x) 
Variance of Est  tn)] = 50 

(5.44) 

and Standard Deviation of Est  (5.45) 
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CHAPTER VI 

TESTING THE MODEL - ANALYSIS OF RESULTS 

6-1 

is presented here with the emphasis on those results which basically sup- 

port the Model hypothesis of Chapter 4; where obvious discrepancies with 

the Model are present, 

A l l  computer programs were run on an IBM 1620, and a r e  presented in 

Appendix B, 

The interpretation of the results outlined in the preceding Chapter 

a fuller investigation is delayed until Chapter 7. 

The scales (except time) have been intentionally omitted from graphs 

for classification purposes, and are listed in Chapter 10 of Vol. 2. 

most of the graphs the computed points have been joined together by straight 

lines only for ease of visual interpretation, and a r e  not intended to portray 

the statistical quantity between the discrete time intervals. 

On 

6-2 Drift Rate - Stationarity Test 

Test theory - Chapter 5, para. 2 
Program numbers, 1, 2 ,3  
Figs. 6-1 to 6-4 

6-2-1 F i r s t  Check 

The ensemble statistics were computed (Program 1) of the 

original Drift Rate data, i. e. the Mean, Mean Square, Variance and 

Standard Deviation of the drift rate at  the discrete time intervals (equations 

(5.8 to (5.11) );  however, difficulty was found in relating the results to the 

Random Walk model, where it w a s  specified (arbitrarily) that the drift ra te  

was to start from zero. 

Time curve is plotted (note: 

Chapter 5, para. 2-2, the model predicts that the MSDR should be linearly 

increasing with time. 

may be present, but with a slight curve upwards with time. 

be answered are: What does the non-zero value at  t = 0 signify (assuming a 

linear projection back in time, from the f i rs t  plotted point)? 

tive of a stationary drift rate component as well as a non-stationary one 

This is illustrated in Fig. 6-1, where the MSDR/ 

the f i rs t  data point available is a t  t = 1). F rom 

Inspection of Fig. 6-1 suggests that this straight line 

The questions to 

Is this indica- 
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. 
(possibly a Random Walk) ? 

at this stage and will be delayed until Section 6-2-2. 

the results reflected that calibration methods (Chapter 3, para. 2), and that 

a 10 hour calibration period is insufficient to remove any constant drift rate 

component from the subsequent data run proper, particularly if  the drift rate 

is a non-stationary process. 

Random Walk is  representative of the major component of drift rate variations, 

it was decided to force the data to zero at  the s tar t  of each run by sub- 

tracting the f i rs t  drift rate data point from all  other values in the same run, 

Unless otherwise stated, all remaining tests were applied to the data, modi- 

fied in this manner. Furthermore, for consistency in the time scale, since 

the DR(t ) have been forced to zero, this point will be considered a s  time 

zero for all subsequent tes ts  (e. g. DR(t 

par t  of the data a t  t = 9, where new DR(t ) = original DR(t 

DR(tl), etc. ). 

(Program 2),  a r e  shown in Figs. 6-2 to 6-4. 

The questions cannot be satisfactorily answered 

It was theorized that 

Therefore, in order to test the hypothesis that a 

1 
) of the original data now becomes 10 

9 10 ) - original 

The results of recalculating the ensemble statistics - zero corrected 

6-2-2 Estimate of the Mean Squared Drift Rate 

The MSDR/Time plot of Fig. 6-2 shows, for the most part, a 

To linearly increasing trend consistent with the Random Walk hypothesis. 

bring out the discrepancies more clearly, a straight line was fitted to the 

plot, passing through the origin, using the least squares technique (Program 3). 

The e r r o r s  in the fit of this line can be considered in three separate ranges. 

i) Times 11 to 14 deviations above 

ii) Times 25 to 49 deviations below 

iii) Times 56 to 59 deviations above 

An attempt was then made to relate these discrepancies back to 

the original data with the following conclusions: 

i) The values a t  times 11 and 12 (12 and 13 of the original data) 

can be directly attributed to the two llwildll points on Gyro No. 47 (Chapter 3, 

para .  3(4) ( i i i)  ), and the peak is considerably reduced if these values a r e  

eliminated from the calculations, Deviations at  times 11, 12, 13 and 14 a r e  

still further reduced if Gyro No. 45 is also eliminated (Chapter 3, para.  3(4) 

(ii) ). 
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ii) The other two ranges cannot be attributed directly to a 

few individual points. 

(and it is stressed that this is  onlya theory) is that the data shows the effect 

of incomplete samples (Chapter 2, para.  3). If the rejection zone based on 

past experience were to cover the range of times 25 to 49, and the rejected 

gyros had been included in the population from which the test data w a s  sam- 

pled, then the deviation in this range  might have been reduced. Now, sup- 

pose a gyro under test was showing a tendency to drift off in a more pronounced 

manner than normally expected, towards the end of the test run; then one would 

be loathe to abort the run, in the event that it might still remain inside toler- 

ance. 
range of times 56 to 59! 

If the Model is co r rec t ,  one possible explanation 

This latter situation could possibly account for  the deviations in the 

Conclusions 

1) The MSDR/Time plot supports the Model hypothesis, the 

discrepancies could only be investigated further by larger samples and longer 

runs. 

2) If the slope of the least squares straight line is designated 

Est(k) then limits can be considered. 

k = Est(k), then from equations (5. 14) and (5. 17a), with R = 50, 

F o r  ease of presentation assume 

k * t  SD(t) = Standard Deviation(t) = - 5 

The following observations were made (reference equation 

(5.17) ).  All Es t  [MSDR(t)] points fall inside the limits given below, except 

at the tabulated times. 

LIMITS Time a t  which Es t  [MSDR(t)l outside limit 

f 1 SD 

f 2 SD 

f 3 SD 

(max. possible = 59 points) 

1, 2, 3 ,  11, 12, 13, 14, 58 

1, 2, 11, 12, 13, 

12, 13 

The f 2SD limits a r e  shown on Fig. 6-2. 
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3) The slight curvature from t = 0 to 3 may indicate a 
stationary drift rate component o r  some correlation in the Random Walk 

drift acceleration, but it w a s  not considered significant at  this stage to 

investigate further (Chapter 7). 

6-2-3 Estimate of the Drift Rate Mean 

The first check applied to the Estimated Mean Drift Rate/  

Time plot was to test  the Model hypothesis 

E(DR) = 0 (5.3) 

This check was combined with the Est(k) derived in Section 6-2-2 and, as 
before, it was decided to use the expected value of k as being equal to Est(k). 
F r o m  equations (5. 14) and (5.16), with R = 50, it follows that the Standard 

Deviation of the population of the Es t  DR(t) is  given by 4%' and the Mean 

of this population is zero. 

the Estimates of the Mean Drift Rate fall within the f 2 Standard Deviation 

limits as drawn. 

As can be seen'from the plot in Fig. 6 - 3 ,  all 

Another feature observable in F i g .  6-3, is the possibility 

that some deterministic trend may be present a s  illustrated by the non-ran- 

domness of the Es t  DR(t) 

explained, in part, by a time correlation of the Drift Rate (Section 6-8). 
It is also interesting to note that, for the Random Walk model, should €he 

drift rate (for any reason) be off from zero by (say) llall degrees /hour, then 

the most likely value of the drift rate at any later t'ime is still l1at1 degrees/  

hour, even though E(DR) = 0 (cf. from t = 38 to 59). 

about the E(DR) of zero. This could be [ I  

Conclusions 

1) The data does not contradict the Random Walk hypothesis 

when combined with the Slope of the MSDR/Time plot, the test being applied 

a t  the "2 Standard Deviation of the Mean" level. 

2) The possibility of some deterministic trend, e. g., a non- 

ze ro  mean I1ramptg, cannot be eliminated unless more data is included in the 

sample. 



6-2-4 Estimate of the Drift Rate Frequency Distribution 

It was  shown in Chapter 4, para. 7,  that the Model hypo- 

thesis implies that the drift ra te  w i l l  tend to a Normal distribution, but with 
a time varying Standard Deviation. 

drift rate distributions were evaluated at 5 different times and the results 

a r e  plotted in histogram form in Fig. 6-4. 

To tes t  this statement, the Ensemble 

Conclusions 

1) Because of the small sample for each distribution (50 

points), the only reasonable comment in support of the hypothesis of a 

Normal Distribution, is that it has not been disproven. 

2) The distributions do become "flatter", the larger  the 

value of t ,  in accordance with an increasing standard deviation, and if a 

Normal distribution is present, then, with this small  sample, i t  would be 

unlikely that any points would fall outside the 3 standard deviation value - 
only one point did, gyro 45 a t  time 14 (15 on the original data), as shown in 

Fig.  6-4. 

- Note: On Fig .  6-4, the estimated Mean has been shown dotted, 

with the ' I f 2  Standard E r r o r  of the Mean" range shown at  the top of each 

distribution. 

(5. 18), viz. ,  

This range has been calculated in accordance with equation 

2- s(t) 2 St. e r r o r  of the mean = - 
.sR1 

where s(t) is the computed estimate of the ensemble stanGard deviation a t  
time t (equation (5.11) and Program 2). In all cases the 2 .  s(t) range 

-77- 
encompasses the zero drift  ra te  level, which gives additional support to 

Section 6-2-3 (where the population statistics were assumed to be known). 

6 - 3  Drift Rate - Figure of Merit Test  

Test  theory - Chapter 5, para. 3. 
F igs .  6-5 and 6-6 
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2 

2 
The Est(F0M) 

Random Walk E(F0M) 

can be modified by reversal  of the summations to: 

is clearly an easier  parameter to investigate, 

is a straight line (equation (5.23) ). 

as the 

Equation ( 5.24a) 

L 

which, from equation 

n R 

r i = O  r =  1 

n 

Therefore, th 

- 
(5. 9) = 1  - L Est [MSDR(ti)] 

n t l  
i = O  

s estimate can be directly computed from the results in 

Sections 6-2-1 and 6-2-2. 

shown in Fig.  6-5 for  the original data, and in Fig. 6-6 for the zero corrected 

data. 

The stimates of the squared Figure of Merit a r e  

To test the Random Walk hypothesis, 

k* t 2 
E[FOM(t)] = - 2 (5. 23a) 

a straight line must be fitted to the data and passing through the origin of the 

graph in Fig. 6-6; however, implicit in the usual methods of least squares 

fitting, is that the deviations of the data from the fitted line be independent f rom 

each other. But, from equation (6-1) it can be seen that a cumulative e r r o r  

can be present, thereby invalidating the least squares f i t  to the Est(F0M) 

data. 

2 

Consider, in equation (6-1) that 

Es t  [MSDR(t.)] 1 = E [MSDR(t.)] 1 t ei 

where the eis a r e  independent e r ro r s .  

n n - 
then E s t  FOM(tn) 1 2 E [ MsQR(ti)] t 

i = O  i =  1 
[ I 2 = m  
r 1 2  

n - , r L 1 2 E[MsDR(~~)J+  1 
n t l  I = -  

then E s t  FOM(tn) I 
-I i = O  i =  1 c 

e i 
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if 

i =  1 

then, even though the e.s a r e  independent, it can be seen that the 

f s will not be independent. n 

The straight line through the origin shown in F i g .  6-6, is the value 

predicted if the Random Walk model is valid (equation (5. 23a), where the 

value of k=Slope of the MSDR /Time plot). 

values of t is explained by equation ( 6 - 2 ) ,  

positive over the early range of time, then e 

be seen from F i g .  6-2 that this is the situation, e. is positive up to time 21. 
As t becomes large, it  would be expected that the eis from 0 to t,  would have 

an average coming closer and closer to zero, and hence this explains the 

1 

The poor fit for the smaller 

as should ei be continuously 

may become large. It can n 

1 

much better f i t  of Est [FOM(t)] for large t.  

Conclusions 
2 The (FOM) parameter w a s  not calculated to provide additional 

proof as to the validity of the Model hypothesis, but rather to give a com- 

plete picture of the data, as this is the manufacturer's test parameter 

(square root thereof). 

does (this is not surprising as it can be directly derived from it - equation 

It supports the model to the same degree as the MSDR 

(6.1) 1. 

6-4 Incremental Drift Rate - Stationaritv Test 

Test theory - Chapter 5, para. 4. 
ProgramNos.  4, 5. 
F i g s .  6-7 to 6-10. 

6-4-1 Estimate of the Mean of the Incremental Drift Rate 

The ensemble statistics of the IDR were calculated from equations 

(5.27) and (5.28), Program 4, and the Est(IDR) /Time graph is shown in 

Fig. 6-7, The Est IDR(t) 

E(IDR) 

are uncorrelated (Section 6-6), the value of 

is very randomly distributed about the Model 

59 1 IDR(ti), will give a 
i =  1 

[ I  
= 0 (equation (5.25) ), and with the assumption that the estimates 

59 
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* 

good estimate of the true mean - this value w a s  very close to zero. 

Standard Deviation of the Random variable EST IDR(t) , (i. e . ,  the Standard 
The 

e r r o r  of the Mean), is to a good approximation, S(IDR) - where S(IDR) 

= K  
is calculated in equation (6.3). 

Estimates a r e  within f one Standard e r ror .  

A s  can be seen fromeqGation(5lQ most of the 

Conclusions 

The Estimate of the Mean IDR supports the Model hypothesis very 

c lo s ely . 
6-4-2 Estimate of the Mean Squared Incremental Drift Rate 

The model hypothesis requires that the IDR be a stationary 

process, consequently the MSIDR should be constant with time. The first  

impression of the plot in Fig. 6-8, is that this is not the case; .however, 

the following ser ies  of steps i s  offered in mitigation for the Random Walk 

hyp othe s is . 
1) Visual interpretation: If initially one ignores the three 

peaks at  time 9, 13, 15, then there does not appear to be an obvious trend 

of the Es t  [MSIDR(t)] , then inclusion of the three peaks does not add a 

trend. 

2) Statistical interpretation: It was thought possible that 

the peaks in the plot could have been caused by the sample size for each 

estimate (50) not being large enough, 

IDR was Normally distributed (this is not implied in the model hypothesis 

(Chapter 5, para. 6-2) ). One could now apply limits in a similar manner 

to those applied to the MSDR plot, but a t  this stage the results of the next 

test  (IDR correlation) were available, indicating that IDR was reasonably 

uncorrelated, therefore a different procedure was adopted. 

points used to obtain Fig. 6-8, a r e  independent and Normally distributed 

then it could be expected (on the average) that only 8 of these points would 

lie outside the bound of f 3s from the Mean, where S is the Estimated 

Standard Deviation of the 2, 950 points. But, from Fig .  6-7,  the Mean is 

effectively zero, and S is calculated from the results of Program 4, viz. 

To test this, it was assumed that the 

If the 2,950 data 
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(6.3) 
i =  1 

(since all points are assumed independent) 

where Var(t.) is the Estimated Variance calculated in a similar 

manner to equation (5.10); 
1 

h o w  e v e  t, i t  

The bound was then increased to f 3.5s  a t  which level not more than one 

point would (on average) have been expected outside the range - there were 

22. Therefore, either the IDR is not Normally distributed, o r  the distri-  

bution tails a r e  being weighted more than the remainder of the population 
(which sti l l  retains the basic Normal distribution shape). At this stage it 

w a s  decided not to abandon the Normal  distribution theory, as many of the 

"outsiders" had their origin in the drift rate data points previously noted 
for gyros 45 and 47 (Chapter 3, para .  3(4) ). The estimates of the MSIDR 

were recalculated with these 22, out the total 2, 950 points, removed. The 

corresponding modifications to the MSLDR/Time plot a r e  shown by the 

dashed lines in Fig.  6-8, and one would n m  conclude, that the modified data 

is indicative of a stationary process. 

w a s found that 39 points (cf. 8) , fell  outside this range. 

3) Returning to the unmodified data, it w a s  realised that, 

being a "squared" statistic, perturbations would be emphasised. Therefore, 

since the estimate of the Mean IDR is  so close to zero (Fig. 6-7), thel'non- 

squared" statistic of the ensemble Standard Deviation can be considered a s  

a measure of a stationary process in this situation. 

P rogram 4) are shown in Fig. 6-9, and the same type of perturbations, but 

less pronounced, can be seen when compared to Fig.  6-8. However, one 

can now see  more clearly, that there is no obvious trend, other than a con- 

stant zero slope, present in the data. 

The results (from 

4) Another technique, when testing for a stationary, ergodic 

process,  uses statistic computed in time (cf. ensemble) as an  indicator. By 

choice of the computed statistics, one can sti l l  further smooth out any 

perturbations caused by small  samples. F o r  instance, if the Running RMS 
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of the IDR is plotted, it should very quickly, as time increases, tend to a 

zero slope straight line - the t i m e  to achieve this, and the subsequent non- 

smoothness of the plot, reflect the degree of support given to a stationary 

hypothesis. 

drift rate computed for each gyro separately (Program 5), is shown in 

Fig. 6-10, together with the Running RMS for 2 of the individual gyro runs 

selected at random (shown dashed). 

stationary hypothesis and the Running RMS for each of the individual gyro runs 

tended to a constant value in a very short time, except where isolated large 

steps were present in the IDR data. 

for  Gyro No. 1, shown in F i g .  6-10, where the sharp rise at  time 50, is 

accounted for, by the LDR at that time having a value given by -5. 5S(IDR); 

it was one of the 22 points referred to previously. 

In Fig. 6-10, the ensemble average of the Running RMS Incremental 

The ensemble average supports the 

This last point is illustrated by the plot 

Conclusions 

1) It is thought likely that a larger sample would have smoothed 
out the perturbations sufficiently to support the Model hypothesis, that the 

MSIDR is constant with time; and, combined with the Est(IDR) = 0 at  any 
time (Chapter 6, para. 4-l), that the IDR is a random stationary process. 

2) Lt will later be shown (Section 6-7-2), that the IDR may 

not be Normally distributed, therefore rejection of all 22 points in step (2) 
of the preceeding analysis, may not have been acceptable. Nevertheless, 

the three data points causing the peaks at  times 9, 13, 15 in F i g .  6-8, w i l l  

be seen to be a long way outside the probability zone covering 2,950 points, 

even with the better estimate fo the LDR frequency distribution. 

it is considered reasonable to ignore these three peaks. 

Consequently, 

6-5 Comparison of the Estimates of the Mean Squared Incremental Drift Rate 
and the S lme of the Mean Sauared Drift Rate /Time Plot. 

Test  theory - Chapter 5, para. 2-2. 
F i g s .  6-2 and 6-8. 

F r o m  equations (5.6) and (5.7), with the unit of time defined as 

Ato (1 hour). 

k = E(MS1DR) 

where equation (6.4) is a numerical equality 

and k = Expectation of the slope of the MSDR/Time plot. 

(6.4) 
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The least squares Est(k) w a s  derived in Section 6-2-2, and to derive 

a best estimate d the MSIDR, the average was computed of all the 

Est  [MSIDR(t)] . . 

59 - L Est  [MSIDR(t.)] 
1. 

i .e.  Est(MSIDR) = 59 
i =  1 

(6.5) 

(this value is shown on Fig. 6-8) 

Equation (6 .  5) requires that the Incremental Drift Rate be a stationary 

process, and equation (6.4) implies that the IDRs a r e  statistically independent. 

The results of these calculations can be expressed, relatively: 

Est(MSLDR) = 2.24Est(k) ( 6 . 6 )  

This proportionality factor of 2.24 is obviously too large to support the 

Model factor of 1.0. 

(Section 6-4-2), would give a lower factor, the result being, 

Elimination of the 22 points outside the range f 3.5S(IDR), 

Est(MS1DR) = 1.73Est(k) (6.7) 

Even with the data modified in this manner, t he  proportionality factor 

of 1 .73  is still  too large. 

Conclusions 

1) Although the IDR is probably a stationary process, it does not 

support the Model hypothesis that the Expected value of the MSLDR be 

numerically equal to the slope of the MSDR/Time plot. 

2) Further investigation of this discrepancy is delayed until Chapter 7, 
where a more  complex model is discussed. 

validity of the simple model, where equations a r e  used which imply the 

equality given in equation (6.4), the value of Est(k) w i l l  be used in calculations 

and not the value of Est(MS1DR). 

intended, ultimately, to reproduce the Drift Rate, and not the Incremental 

Drift Rat e.  

In the remaining tests Qf the 

This choice is made because the Model is 
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6-6 Incremental Drift .  Rate - Correlation Test 

Test  theory - Chapter 5, p a r a .  5. 
Program No. 6. 
Fig.  6-11. 

As a zero  Mean, of the IDR has been established in Section 6-4-1, 

the estimate of the Autocorrelation Function w a s  computed in accordance with 

equation (5.31), (Program 6). 
dual Autocorrelation Functions for each run (equation (5.30) ) were also 

available for  comparison with the  final ensemble average. 

estimate of the correlation functions is shown in normalized form (i. e. 

ACF(0) = l ) ,  in Fig. 6.11. A check of the 50 individual autocorrelation 

functions showed that they were generally of the same form, so the ensemble 

average was considered to be the best estimate. There was some tendency 

for greater  negative correlation to be present, but it was  not considered at 
this stage (Chapter 7) .  

The program was  arranged so that the indivi- 

The ensemble 

The Model ACF( T) of the IDR is given in equation (5. 29). In normalized 

form this becomes: 

1 when T = 0 

0 when T # O  
Normalized ACF(!r) = (6.8) 

Conclusions 

1) it would have been surprising if no correlation (when T # 0) had 

existed in any of the estimated A C F s ,  and therefore one concludes from 

Fig. 6.11, that the Random Walk hypothesis is not disproven by this test .  To 

this statement, the qualification must be added that a normalized ACF of 

0.06 has not been considered significant. 

2) The above conclusion wi l l  be re-examined in more detail in 

Chapter 7. 

6-7 Frequency Distributions 

Test Theory - Chapter 5, para.  6 .  
Program No. 7. 
F ig .  6-12. 
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6-7-1  

6-7-2 

D rift Rat e Distributions 

Previously discussed in Section 6-2-4. 

Incremental Drift Rat  e Distribution 

Combining the theory of Chapter 5, para. 6-2 with the con- 

clusion in Chapter 6, para. 6, the IDR distribution can be estimated from 

2,950 independent (to a good approximation) data points. This was done by 

grouping the data points (Program 7) and the results a r e  presented as a histo- 

gram in Fig. 6-12. 

each rectangular block of the histogram, and all blocks a r e  of equal width. 

To give a better presentation of the major part  of the distribuion, the lltailsll 

have been drawn separately; with their vertical scale magnified by 10 and 

width scale diminished by 4. 

The vertical scale gives the number of points falling in 

The first impression was that the data might be Normally 

distributed except for the long tails. 

there w a s  no point of inflexion (the one standard deviation point in the 

Normal distribution). 

using standard tables, with Mean, zero, and Standard Deviation given by 

S(1DR) from equation (6.3), was superimposed on the histogram (Curve A), 

and as can be seen, the f i t  is not very good. 

However, a closer look suggested that 

To confirm this, a plot of a Normal distribution, 

An interesting point was  then noticed. Fo r  a better fit to the 

major par t  of the distribution, using a Normal curve, the Standard Deviation 

needed to be smaller. 

superimposed (Curve B), with Mean, zero, and a standard deviation given by 

f/E where k has been previously defined as the expectation of the slope 

of the MSDR/Time plot. The fit would appear to be better than Curve A over 

the majority of the Histogram, except for the tails (as was to be expected). 

The significance of this result is that, based on the Model hypothesis, the 

Variance of the LDR distribution (not necessarily Normal) is  k. 

evaluated from equations (5. 25), (5.26) and (6.4). 

very useful result and w i l l  be referred to later (Chapter 8, Table 8-1). 

Therefore a new Normal distribution curve w a s  

This can be 

The improved fit is a 

Returning to the correct estimate of the IDR standard deviation 

it was thought that a better mathematical fit of the histogram would be 

achieved by considering some other type of Distribution. 

of a simple distribution is an exponential one, symmetric about zero; 

The obvious choice 
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was given added support by replotting the histogram with a vertical  logarith- 

mic scale - ignoring the scatter of the tails,a very reasonable tri-angular 

shape resulted. 

texts, the theory i s  developed in Appendix A, where the probability distribu- 

As this distribution is not usually given in standard statistical 

tion is shown to be 

and the boundary containing, on average, all but one of the 2,950 IDR 

points, is given by: 

x = f 5.65 Q (A. 9) 

where cr is the standard deviation of the distribution, 

Now, if S(LDR) f r o m  equation (6.3) is substituted for cr in 

equation (A. 9), it is found that only 6 data points lie outside this boundary, 

which is a much more  logical answer than the 22 points for a Normal Di s t r i -  

bution with a boundary of f 3. 5S(LDR), as used in Section 6-4-2. 

values a r e  listed in Table 6-1 , as functions of S(1DR). 

These 6 

Gyro Run No. 

6 
6 

45 

45 

47 

47 

Time IDR As A Function of S(IDR) - 
44 - 6.2s  

46 - 7.3s  

9 t 9.7s 

15 - 8 .3s  

11 t 5.9s  

13 -10.2s 

TABLE 6-1 

Analysing these 6 points, it can be seen that the last 4 points 

can be directly attributed to the visually observed Itbadtt drift rate points, 

and the f i r s t  2 points to the Gyro with most fluctuations, as listed in 

Chapter 3, para. 3(4). Also, the values a t  t imes 9,13,15 a r e  so large, 

that removal of these points eliminates the 3 peaks a t  the corresponding 

t imes on the MSIDR/Time plot of Fig. 6-8, which is a much. sounder 

reasoning than that previously used in Section 6-4-2. A recalculation of 
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S(IDR) with these 6 points removed (equation ( 6 . 3 )  ) gave, 

= 0.94. S(IDR)original (ID R, modified 

o r  in the terminology of equation (6.6) 

Est(MSIDR) = 1.98. Est(k) (6. 1 

(since the Variance of the IDR differed only in the last figure, f rom 

the MSIDR) 

The value of S( IDR) modif ied was considered to be the best 

estimate of the standard deviation of the Incremental Drift Rate, and conse- 

quently, this value w a s  substituted for IT in equations (A. 6) and (A. 9) to 

derive the estimated 

Rate. 

Fig. 6-12 and the f i t  to the actual data is remarkably close. 

distribution of the Incremental Drift 

The result (Curve C) has been superimposed on the histogram in 

Conc lus ions 

1) Although the IDR (or Drift Acceleration) distribution w a s  

not specified as part  of the model hypothesis (Chapter 4, para. 7 and 

Chapter 5, para. 6-2), a knowledge of this distribution i s  required if  ulti- 

mately it is intended to generate synthetic data, representative of actual 

gyro data. 

2) The prior assumption of the IDR being Normally distributed, 

is not supported by the actual data distribution (Curve A). 

distribution f i t  is obtained if a standard deviation, given (numerically) by the 

A better Normal 

square root of the slope of the MSDR/Time plot - i. e. JEst(kf, is used 

(Curve B). 

of the standard deviation of the speciiied Model IDR. 

shown previously, that this value was not supported by the data (equation (6.6) ). 
The Normal distribution hypothesis was maintained in 

The expectation of this last statistic is equal to the expectation 

(Note: it has been 

3) 
previous tests,  with the thought that the large tails might have been contributed 

by "noise", introduced by the method of obtaining the IDR from the original 

Drift Rate data. 

ing is, inherently, a "noise" accentuating source.) However, from the 

(Differencing is one form of differentiating; and differentiat- 
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histogram in Fig. 6-12, it is not possible to extend this reasoning to 

account for  the large peak surrounding the Mean, zero, of the IDR. 

Therefore an exponential distribution, of the form given by equation (A. 6), 

w a s  fitted with a S(IDR) modified by the elimination of 6 (out of 2, 950) 

unlikely data points. 

conclusion is: 

The closeness of the resulting f i t  was such that the 

If the incremental drift rate, as calculated, is a true repre- 

sentation of the actual difference of the gyro drift ra te  over one hour 

intervals, then this parameter has a probability distribution, to a very good 

approximation, given by 

where the 

equation (6. lo ) ,  

2 best estimate fromthe data, for the variance cr , is ,  from 

3 

Est(crL) = 1. 98Est(k) (6.11) 

(Note: equation (6.11) has been expressed in this form for classifi- 

cation purposes only - Est(k) i s  given in Vol. 2. 

in any way, to obtain the Est(u ). ) 

The Est(k) was not used, 
2 

This conclusion w a s  unexpected at the outset, and the closeness 

of f i t  makes this a somewhat curious result, leading to the question as to 

why this should be so? A possible answer is discussed in Chapter 7,  para. 3. 

4) The value of S(IDR)modified will be used for the St. Dev. 

of the Incr. Drift Rate in all subsequent calculations. 

6-8 Drift Rate Correlation 

Test theory - Chapter 5, para. 7. 
Program No. 8. 
Figs. 6-13 and 6-14. 

It was stated in Chapter 5, para. 7, that a family of curves is probably 

the most useful presentation of the Drift Rate Correlation test results. 
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Eight correlation curves were computed (Program 8) f rom equation (5.36) , 
for values o f t  - 5, 10, 15, 20, 25, 30, 35, and 40 (the data w a s  zero- 

corrected a t  time 1 of the original data, i. e. time 0 on the graphs). The 
results for odd values of tm are shown in Fig.  6-13, and for even values in 

Fig.  6-14. 

m 

The Model prediction is a straight line (equation (5.35) ), of magni- 

Inspection of the plots tude k-  tm (equation (5.34) ), for any individual plot. 

does not confirm o r  refute the straight line hypothesis, and therefore, the 

distributions were considered (Chapter 5, para. 7-2). 

distribution cannot be tested, as the points on any one curve a r e  all a func- 

tion of the data a t  the start of the run (t,) - this a lso explains the lack of 

randomness in the calculated points. 

Figs .  6-13, and 6-14, derived from equations (5.38) and (5.45), where the 

Est(k) has been substituted for  k. 

The expected Normal 

Tolerances have been shown on 

i. e. graph symbol p = Est(k) tm (6.12) 

graph symbol cr = Est(k) - (6.13) 

For ease of presentation, integer multiples of cr calculated for tn = t, 

(designated cr(t 

each curve, except for t 

is the smallest value of IT (cr increases with tn and tn - > tm). 

it is observed that all 7 curves fall inside f 2 cr(tm) , and consequently, all 

points wi l l  fall inside the t rue bound of f 2 cr (tn). 

),  which enclose all of the points a r e  shown at the s ta r t  of m 
= 10. As can be seen from equation (6.13), this. m 

From the plots 

F o r  the plot starting at tm = 10, the correct  bound of f 2 cr(t,) is 

shown dashed. The points which fall outside this bound a r e  all within 

f 3 c r q .  

The final observation from the plots, is  that there is a general ten- 

dency for  the results to be lower than the Model predicted value (p). This is 

explained, in part ,  by many of the curves having an Es t  MSDR(t m )]below the 

predicted value, but a further explanation is offered in Chapter 7.  
iI 
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I *  
I Conclusions 

0 On the assumption that the D r i f t  Rate (and the Est COR(tm, tn) a r e  

Normally distributed the results a re  in reasonable agreement with the 

Model hypo the s is . 

Footnote to Chapter 6 : -  

It may appear that this Chapter has been written to prove the Model 
hypothesis, rather than to test it! 
have been presented, and it is  left to the reader 's  own judgement as to 
whether o r  not, he agrees  with the author's reasoning. 

However, all the facts that were available 
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CHAPTER VI1 

FURTHER ANALYSIS OF THE DISCREPANCIES WITH THE 

MODEL HYPOTHESIS 

7-1 The theory of Chapter 5 and the analysis of the results in Chapter 6, 
were both concerned with testing the specified Model; and the Conclusions 

at the end of each section in Chapter 6 were primarily orientated to give 

the answers rrYesll, I1Not1 o r  "Inconclusivett, to the question of whether o r  

not, that particular test  supported the Model. 

sis is changed from "testing a Model", to "fitting the data", and the 

theory and results presented here, are done so, in retrospect - i. e. 

they gave the best answers of the many methods tr ied (cf. the chronological 

presentation in Chapter 6). 

In this Chapter, the empha- 

7-2 IDR Correlation 

The major discrepancy between the specified Model and the data 

was in the disagreement between the estimated slope of the MSDR/Time 

plot and the estimated mean squared LDR (Chapter 6, para. 5). W-ith the 

motivation provided by Reference 6, the IDR autocorrelation functions 

were reconsidered, and for ease of reference, the previous results of the 

computation (Fig. 6- 11) of the normalized ensemble autocorrelations 

(equation (5.31) ) a r e  given in Table 7-1. 



LDR Ensemble Autocorrelations (normalized) 

Time Difference ACF Time Difference 

0 

1 

2 

3 

4 

5 

6 
7 

8 

9 
10 

11 

12 

13 

1,000 

-. 054 

-.032 

.015 

-. 025 

-. 068 

-. 067 

-. 023 

.008 
-. 008 

. 000 

. O l l  

-. 031 

-. 032 

14 

15 

16 

17 

18 

19 
20 

21 

22 

23 

24 

25 

26 

27 

ACF 

,002 

,021 

-. 026 

.002 

-. 020 

,027 

-.011 

-. 024 

- 

.024 

-.035 

.026  

.a30 
,020 

.022 

TABLE 7-1 

In the Conclusions of Chapter 6, para.  6, the level of correlation 

in Table 7-1 was not considered significant, and XDR was treated as being 

statistically independent over one hour intervals, thereby supporting the 

Model hypothesis that 

E ( A ~  A? = E(A’) . b i j  (4.3) 

Now, consider the situation where equation (4.3) is not assumed to 

be proven for  the data. 

fied to: 

In consequence the Model hypothesis must be modi- 

2 
Ij-iI 

E(Ai Aj) = E(A ) C 
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where all the properties of the original Model are retained (in 

particular that Drift Acceleration (and IDR) are stationary processes), 

except those dependent on equation (7.1) 

and C is the normalized autocorrelation function for  a time 
Ij-il 

difference j - i  (i.e. C = 1, etc.). I I  0 

F r o m  equations (5.2), (5.4) and (7. 1) it follows that 

2 2 2 
= E[(A1 A2 A n 3. (Ato) E[DR(tn)] 

L Ai*Ai tn- l  1 r n  n- - 1 n- - (n- 1) 
t 2  L A:Aitl t t 2 

1 

i= 1 i= 1 

= E(A 2 ) [nCo t z ( n - 1 ) ~ ~  t - t 2(n-(n-1) )cn 2 
- 

(7.2) 

Since t n 1 Ato = n-At6, and IDR. = Ai 

equation (7.2) can be rewritten as, 

f n- 1 \ - 
E[MSDR(t ) ]  = E(MS1DR) 1 t 2 2 Ci 

i= 1 
n (7.3) 

If the IDR is corrected over I t a t t  intervals (i. e. Ci fo r  (i> a) = 0) 

t a 
(7.4) 

0 

- 
then E[MSDR(t )] = E(MS1DR) . 1 t 2 - L Ci (1 

i =  1 
n 

F o r  values of n >  - a t 1, equation (7.4) represents a straight line 

(with a non-zero slope, and not passing through the origin on the MSDR/Time 

plot). 
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i 
n Inspection of equation (7.4) shows that (1--) is always positive, and 

therefore, a large negative C. (possibly more than one), would have the 

effect of reducing the gradient wbic&,as can be seen from equations (6.6) 
and (6. lo) ,  is  the required result fo r  a better comparison of the Model to 

the data. 

1 

7-3 Check on Gyro Uniformity 

A large negative C to support the analysis in Section 7-2, is not pre-  i' 
sent (Table 7-1), therefore the derivation of the ensemble average of the 

Autocorrelation Functions w a s  questioned. 

normalized on completion of the evaluation in equation (5.3 1). 

however, that the gyros were not uniform; more specifically, that the 

MSIDR as computed for  each gyro separately (i. e. a time average), did not 

come from the same population - this was a fundamental assumption in 

khapter 4, para. 2(3). 

Function would be to take an ensemble average of the normalized ACFs for 

each gyro. Prggram 6 printed out each individual gyro MSIDR and normal- 

ized ACF so this was a comparatively easy point to check. 

MSIDRs for each gyro i s  shown in Fig. 7 - l a  and it was noted that the 3 

points remote from the other 43, were the MSIDR. 

and 47, each one of which contains 2 points of the outsiders given in Table 

6-1. Elimination of these points and the recalculation of the MSIDR for the 

3 gyros, based on 57 (cf. 59) IDR data points, gave the histogram shown in 

F i g .  7-lb.  

Theresu l t s  in Table 7-  1, were 

Sippose, 

- 

Then a better estimate of the Autocorrelation 

A histogram of the 

F o r  gyro Nos. 6, 45 

To evaluate F i g .  7 - lb  it was assumed that, regardless of the IDR 

distribution, the MSIDR distribution should be approximately Normal (there 

being 59 points in the determination of each MSIDR) . The 15 gyros having 

an MSFDR in the histogram block nearest  to zero a r e  contrary to a Normal 

Distribution hypothesis, but it should be noted that all 15 points fell in the 

upper half of the block. The Est MSIDR for the modified data (6, out of 

the 2, 950 points, eliminated) is shown dashed on Fig.  7-lb, and the range 

of f 3 us i s  shown at the top of the histogram where us is derived in 

Appendix A, assuming the IDR to be exponentially distributed. 

[ I  

Standard deviation (y) = r2 (A. 15) 
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2 Therefore, i f  E s t  is substituted for  IJ and N = 59, wS is 

given approximately by 

IJ = Es t  MSIDR ,/r 
S (7.5) 

6 gyros, out of the total of 50, had a MSIDR outside the f 3 Q range 
(all 6 were above t 3 IJ ) ,  and therefore, it is possible that the gyros a r e  not 

uniform - this w a s  a basic assumption in Chapter 4, para. 2 (Assumption 3). 

Futhermore , if the byi.os a r e  non-uniform, the exponential distribution of 

the IDR could be attribuLed Lo a summation of different Normal distributions 

for each gyro (i. e. different Variances for each gyro). 

investigate iurther, the uniformity 01 the Lyros, the distributions of the indi- 

vidual gyro IDRS were considered. 

that MSIDRs for these gyros were spread throughout the range of the histogram 

in Fig. 7-lb. 

Figs. 7-2 and 7-3; with the f IJ points (IJ = A/Est(MSIDR)' 

horizontal axes. 

to the Es t  MSIDR . 

S 

In an attempt to 

* .  
6 gyros were selected on the basis that 

The IDR distribution histograms for these gyros are  shown in 
r 

) marked on the 

Also shown is the ratio of the MSIDR for the particular gyro, 

[ I  
There are 2 possible alternatives to be considered: 

1) The histograms al l  represent samples from an exponential 

distribution. 

The histograms each represent a sample from different statis- 

tical populations (the populations being, probably, Normally 

distributed). 

2) 

Because of the basic similarity of the Normal and Exponential distri-  

butions, and the small number of data points (59) in each histogram, no 

positive conclusions caii be m a d e  from the inspection of Figs. 7 - 2  and 7-3. 

Noting that an Exponential distribution would have more points around the 

mean (zero), more  points in the tails and no pomt of inflexion, as compared 

with a Normal distributian; it is suggested that better support is given by, 

i) the 3 gyros in Fig. 7 - 3  to alternative (1) 

ii) the 3 gyros in Fig.  7 - 4  to alternative (2).  
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Conclusions 

. 

1) Doubt has been raised on the fundamental assumption of much of 
the preceding analysis, that the gyros a r e  uniform (i. e. all the data analysed 

is a sample from the same statistical population). 

ber of data points in F igs .  7-1 to 7-3, the results a r e  inconclusive, and further 

investigation is beyond the scope of this thesis. 

Because of the small  num- 

2) If the gyros a r e  non-uniform, then it might be possible to "normalize" 
the data for each gyro to achieve uniformity in any subsequent analysis; 

however, a check on the ensemble average of the normalized ACFs for each 

gyro, gave different, but no more predominant values of correlation (C.) than 

those in Table 7-1. 
1 

7-4 Reconsideration of the Autocorrelations of Table 7-1 

As no large negative Ci is present in Table 7-1, the effect of several  

small  values was next investigated. A maximum correlation time difference 

of 7 was  selected (a = 7 in equation (7.4) ), based on the following retrospec- 

tive arguments: 

1) From time difference 1 to 7, there a r e  sixnegative values 

of C. and only one small positive value. 

2) F rom time difference 8 on, the correlations a r e  much more 
randomly distributed about zero, thereby tending to cancel out 

in equation (7.4),  

The values for large time differences a r e  based on a fewer 

number of t e rms  in the estimate (equation (5.30) ),  and a r e  

therefore less reliable than the small  time difference 

correlations . 

1 

3) 

Substitution of C. for i = 1 to 7,  in equation (7.4) reduces it to: 
1 

E [MSDR(t )] = E(MS1DR) (0.492n t 2.15) n 

for n > 8 - 
Now substituting Est(MS1DR) from equation (6. l o ) ,  (the estimate based 

on 2,944 out of the 2,  950 IDR points - see  Conclusions (3) a t  the end of this 

Section), for E(MS1DR) in equation (7.6), 
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I 

where Est(k) is the least squares f i t  for the slope of the MSDR/Time 

plot. 

Thus a close fit of the modified "correlated" Random Walk model to 

The MSDR/Time plot of Fig. 6-2 is redrawn in the actual data will result. 

Fig. 7-4, with equation (7. @(points for- n <  8 a r e  calculated from equation 

( 7 . 3 )  ), and the least squares fit of Fig. 6-2, superimposed. 

7-5 Conclusions (assuming Gyro Uniformity, Section 7-3 )  

I )  The modified model hypothesis illustrates the probable cause of 

the major discrepancy between the previous Model and the test  data - the 

change in Drift Rate (LDR) is not statistically independent over one hour 

intervals. 

2) The correlation is small but extends over several  hours (7 w a s  

Because of these low values, the estimates of suggested by the analysis). 

the ACFs a r e  probably in e r ro r ,  but the final result, expressed in equation 

(7. 6), is a good approximation to the data. 

3) Two questions a r e  raised by this analysis. One, can a better 

estimate of the ACF be obtained, either by elimination of the I1badfl data or ,  

preferably, by a bigger sample? Secondly, is  the LDR frequency distribution, 

and its mathematical f i t  (F ig .  6-12), still valid? Neither question was 

pursued further, but it is  thought unlikely that the distribution would be 

varied much, through having considered the 2, 950 points to be statistically 

independent, if the correlation levels in Table 7- 1 a r e  approximately correct. 

4) The Drift Rate correlation tes t  results a r e  also supported by the 

modified Model, as revision of the theory in Chapter 5, para. 7 ,  shows that the 

expectation of the Drift Rate correlation is E MSDR(tm)] at t m' as before, 

n' - but fa l l ing  to a somewhat lower constant value a t  t for  all n > a t 1, where 

a = number of steps over which the D R  is correlated. 

expected level a t  t 

for  all 8 curves in Figs. 6-13 and 6-14); but the value calculated for a = 7, 

and using Table 7- 1, was numerically equal to 1. lS(IDR), (or 1.55 d a ) ,  
which was too small to add any additional remarks to those of Chapter 6, 
para.  €3. 

1 
The change in the 

to that a t  tm, for n - > a t 1, is a constant for all tm (i. e. n' 

- 73 - 



5) If the IDR is correlated, the calculation of us in Fig.  7 -1  would 
underestimate the true value. 

basic assumption of gyro uniformity a s  fewer gyros would have an MSIDR 

outside the f 3 u boundary. 

A larger value of us would give support to the 

S 
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CHAPTER VI I I 

SUMMARY CF RESULTS, AND VALIDITY OF THE PRCPOSED 

STATISTICAL MODELS 

8-1 Properties of the Proposed Statistical Models 

8-1-1 Model1 

A Random Walk type of model, having a representative sample 

as shown in Fig. 4-1, 

Accelerations", which a r e  defined as the difference in the Drift Rates a t  one 

hour intervals, divided by the time interval (one hour). 

the "Drift AccelerationI1 (A:) are: 

The Model is completely specified by the "Drift 

The properties of 

A 

The (A.) E ccnstitute a statinna-ry; ergodic, random 

process, and are statistically indepezdent of each 

other. 

The Drift Acceleration is Normally distributed, with 

Mean, zero, and a best estimate of the Standard 

1 

Est&) Deviation given by dy; - where Est(k) is the 

slope of the least squares straight line f i t ,  through 

the origin, for the Mean Squared Drift Rate/Time plot 

of the analysed data. 

rate data as tabulated at one hour intervals, corrected 

io zero by siibtractingthe Pirst data point f rom all 

other points in the same run. 

This data i s  the original drift 

The other properties of the Model can all be developed from 

these two conditions. 

8-1-2 Model I1 

The basic specification of the Model, as shown in Fig. 4-1, 

remains similar to Model I.; however, the conditions (1) and (2) of Section 

8-1-2 a r e  now modified, so that: 
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The (A.) s constitute a stationary, ergodic, 

random process, but they a r e  not statistically 

independent quantities. The level of correlation 

is low, but extends over several  hours, the best 

estimate available is given by the correlation 

figures from time difference 0 to 7, in Table 7-1, 

resulting in an expression for the E MSDR(tn)] , 
given by equation (7.6). 

The Drift Acceleration is "exponentially1' distri-  

buted, having a Probability distribution given by: 

1 

I 

2 where the best estimate of u is given by 
this quantity being numerically 2 

as derived in (DA3rnodi€ied' 2 
(IDR) modified equal to 

Chapter 6, para. 7-2. This latter quantity is the 

Estimated Variance of the Incremental Drift Rate, 

with 6, out of the total 2, 950 data points, eliminated 

(Table 6- 1).  

(3-2 ComDarison of the Models With the Test Data 

The various tests,  and the comparison of the results with the Model 

predictions, are summarized in Table 8 - 1. 

8-3 U s e  of Models 

As was stated in the Introduction, the use of the Models, to indicate 

the possible causes of gyro drift e r ro r s ,  will not be pursued (obviously 

Model I1 provides more information in this respect). 

For prediction, the Models serve a two-fold purpose: 

1) For  prediction of the Distribution of the gyro drift rate at  some 

future time, after correction of the instantaneous gyro drift rate to zero, a 

diagram, such a s  Fig. 8-1, can be used. The interpretation of the diagram 
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Comparison of the Test Results With the Model Predictions 

. 

- 
No. 
- 

1 

2 

3 

4 

5 

6 

- 
7 - 
8 

- 

Data Test 

Des c rip tion 

MSDR /Time 

Mean DRfTime 

DR Distribution 
/Time 

Mean IDRITime 

-;VISIBR/Time 

LDR 
Aut oc o r r elat ion 

LDR 
Distribution 

DR Correlation 

Xelevant 
Figures 

6-2 

6-3 

6-4 

6-7 

6-8 
6- 9 
6- 10 

6-11 

6- 1 2  

6-13 
6- 14 

--__^_ _ _  

Comparison: Test  Results /Model Prediction 

MODEL I 

* 
Good 

Ac c ep table 

Acceptable 

Good 

Ac c ep t ab1 e 

~~ 

Fair 
(in retrospect) 

Approximation 
(Curve B) 

Acceptable 

MODEL IL 

Expectation is 
Good 

Acceptable 

Acceptable 

Good 

Acceptable 

* 
Good 

Good 
(Curve C) 

Acceptable* 

Translation (English /Statistics) 

* . . . by definition of the Model 

Good . . . not statistically disproven 

A c c ep tab le) . . more data require, i. e. sample too small 
Fair ) '  

Approximation. . . known e r r o r  

TABLE 8-1 

- 77 - 



\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ 

\ 

\ 
\ 
\ 

\ 

\ 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
\ 
\ 
I 
\ 

\ 

\ 
Y 

i 
I 

I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
1 
I 
I 

I 
I 

i 

I 
I I 
I I 

I I 
I I 
I I 

i t '  i I I 

Ill 1 
- S I 
t I 

I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

i 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

I 
I 

i 

I 
I 

I 
I 
I 

I 
I 
I 
I 

I 

I 
i 

I 
I 

I 
I 
I 
I 

I 
I 

I 

i I 

+ 



. 

. 

is based on equation (5. 15), i. e. “At time T, there is a 68% probability 

that the drift rate will be within f 1 Standard Deviation from zero. I’ 

SD curves have been computed on the basis of, 

The 

( 8 .  1) 
(cf. equation (5. 14)) 

which is a reasonable prediction based on the test  data, and confirmed by 

both of the Models. The curves a r e  shown dashed after t = 59, as they 

represent Model I prediction, and not the test  data results (see Section 8-4). 

2) The vital link missing in Fig. 8-1, is the relationship between 

the gyro drift e r r o r s  and the system output e r ro r s .  

by using the Model to generate synthetic data as the input to a computer simu- 

lation of the system (Chapter 9, Vol. 2). 

use, but it has not been w e u  ’I’ usfLIGu ---a LT +hi= analysis; A and clearly it i s  

considerably harder to use  as a data generator (with correlation, and expon- 

ential distributions, to be included), than Model I. The use of Model I would 

ignore, completely, the correlation effects, and would approximate the 

estimated LDR distribution by a Normal distribution. This latter approxi- 

mation i s  a reasonable one as, from Curve B in Fig. 6-12, it can be seen 

that, although it eliminates the tails, this is counteracted by the generation 

of fewer points around the mean. 

This can be investigated 

Model I1 is  the better model to 

8-4 Validity of Models 

The validity of a statistical model must be very clearly stated. In 

addition to the discrepancies noted in Chapters 6 and 7, the following conditions 

must be applied to the use  of the Models developed in this thesis. 

Models a r e  only applicable, 

1) 

2) 

To gyros of the specific type analysed. 

To the conditions of the test configuration; shown simplied in 

Fig. 3-1. 

Over the time of the data runs (effectively 59 hours, from zero 

correction). 
3) 

Extension of the Models to applications outside these conditions (e. g. 

when base motion present, o r  for longer times), m a y  possibly be inferred 

f r o m  the analysis, but certainly has not been proven. 
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APPENDIX A 

THE STATISTICS CF A SYMMETRIC EXPONENTIAL DISTRIBUTION 

Consider 
-b * 1x1 f(x) = a. e 

This will be a Probability Distribution 

00 

if j f(x) dx = 1 

- 0 0  

i. e. if 
- b *  x 00 

2 ..j a - e  dx = 1 

0 

or b = 2a 

Now, since the Mean = 0 ,  the Standard Deviation (u), is given by, 

r2 = r x2 . f  (x) dx 
J 

- - m  

00 -b - x 
= 2 jx2 . a . e  dx 

0 

- 4a 

b3 
- -  
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Combining equations (A. 1) , (A. 3) and (A. 5), the exponential probability 

disbribution is given by, 

and the a rea  under this llnormalizedll exponential distribution is 

X 

F(x) = 1 f(x) dx 

- -oo  

X 2 

e 1 = 1 - -  
2 f o r x >  0 - 

Now, applying equation (A. 7) to the IDR data (Chapter 6, para. 7-2), con- 

siting of 2, 950 points, what is  the boundary (* B cr) a t  which there will  be, 

on the average, only one point present in the ta i ls?  

Since the distribution is  symmetric, it is only necessary to consider the 

"upper endt1 tail, containing - data point, i. e ,  that the upper tail encloses 

an a r e a  - 70 of the total area.  

F r o m  equation (A.7) it follows that, 

1 
2 1 

-59 

i. e. 

giving 

1 
5, 900 1 - F(x) = - 

-&'. x 

e 1 
2,950 

- - -  

x = 5 . 6 5 ~  

- 81 - 



. 

or B = 5.65 (A. 10) 

Consider the random variable x 

- . __ - _ _  
2 where x has the exponential distri-  

bution of equation (A. 6) 

since E(x) = 0 

also 

the refore 

2 
E(x2) = u 

4 
E(x4) = r x f(x) dx 

12' 

= 2  

m s 
0 

4 = 6 a  

4 x *  

- A I -  v r  
e 

2 
Variance (x 2 ) = E(%) - [E(X")] 

(A. 11) 

X 

dX 

(A. 12) 

(A. 13) 4 = 5 a  

2 and Standard Deviation (x ) = a' 1/5- (A. 14) 

If the random variable y is defined as the average of N independent 
2 values of x 

then Standard Deviation (y) = u = E(x2)& (A. 15) 

and for large values of N the distribution of y wil l  approach the Normal 

Distribution. 
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C PROGRAM 3 MSDRITIME - LEAST SQUARES SLOPE 

SUM = 00 
DEN = 00 
DO 10 N = 1 * 6 0  
Ss N- 1 
READ 100,Y 
SUM = SUM + S*Y 

10 DEN = DEN + S*S 
SUM = SUM/DEN 
PUNCH 101, SUM 
CALL E X I T  

100 FORMAT (27X,E1003)  
101 FORMAT (5X,17HMSDR/TIME SLOPE tF6.3) 

END 

C PROGRAM 4 INCRm D R I F T  RATE ENSEMBLE S T A T I S T I C S  

aFANDK0504 
D 1 *.'T N S I ON D ( 5 0  9 60 1 

1 FFAf] 1 ! 1 9  [ ( ~ ( I W J ) ~  J=1,60), i=irSOi 
c COMPUTE i:iC'?c'!y NTfi.1 3 4 I F T  RATE 

DO 6 I ~ 1 9 5 0  
DO 5 J ~ 1 9 5 9  
JJx6 1-J 

5 D ( I , J J )  D ( I 9 J J )  - D l I r J J - 1 )  
6 PUNCH 1 0 2 i  I , ( D ( I * J ) , J = 2 r 6 0 )  

C COMPUTE I D R  ENSEMBLE S T A T I S T I C S  
PUNCH 104 
PUNCH 105 
DO 20 Jf2960 
EMEAN PO. 
EMSQoOo 
DO 10 I=1,50 
EMEAN p EMEAEI + D ( I , J )  

EMEAN EMEAN/50o 
EMSQ = EMSQ/SOo 
VAR = ( ( E M S Q - E M E A N * * ~ ) * ~ O O ) / ~ ~ O  
SD VAR**o5 

10 EMSQ = EMSQ + D( I,J)**2 

20 PUNCH 106, JVEMEANSEMSQIVARISD 
GO TO 1 

101 FORMAT (10F7.1) 
102 FORMAT ( l X ~ 1 3 / ( 1 0 F 7 0 1 ) )  
104 FORMAT (10X,42H?NCREMENTAL D R I F T  RATE ENSEMBLE STATIS'TbJCS///) 
1 0 5  FOCtMAT ( ~ X , ~ H T I M E ~ X I ~ H M E A N ~ ~ X , ~ H M S Q ~ ~ X ~ ~ H V A R ~ ~ X I ~ H S D / / ~  
106 FORMAT ( 4 X , I 3 r 4 ( 6 X , E 9 0 2 ) )  

END 
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C PROGRAM 1 D R I F T  RATE ENSEMBLE S T A T I S T I C S  

*FANDK0504 
DIMENSION D ( 5 0 9 6 0 )  

PUNCH 1 0 2  
PUNCH 1 0 3  
DO 2 0  J = l r 6 0  
EMEtjN = 0. 
EMSQ = 0. 
DO 10 I = 1 9 5 0  
EMEAN = EMEAN + D ( I r J )  

EMEAN = EMEAN/50. 
EMSQ = EMSQI50. 
VAR = ( (EMSQ - EMEAN+*2)*50.)/49. 
SD = VAR++.5 

1 READ l V l r  ( ( D ( I r J ) , J = 1 * 6 0 ) r I = 1 , 5 0 )  

10 EMSQ = EMSQ + D ( I r J ) * * 2  

2 0  PUNCH 104rJrEMEANrEMSQrVARrSD 
GO TO 1 

101 FORMAT (10F7.1) 
102 FORMAT (15X,30HDRIFT RATE ENSEMBLE S T A T I S T I C S / / / )  
103 FORMAT ( ~ X I ~ H T I M E ~ X , ~ H M E A N ~ ~ X ~ ~ H M S Q ~ ~ X ~ ~ H V A R ~ ~ X ~ ~ H . S D / / )  
104 FORMAT ( 4 X , I 3 ~ 4 ( 5 X r E 1 0 . 3 ) 1  

END 

r PROGRAM 2 D R I F T  RATE ENSEMBLE S T A T I S T I C S  - ZERO CORRECTION 

+FANDK0504 
DIMENSION D ( 5 0 r 6 0 )  

PUNCH 1 0 2  
PUNCH 103 
DO 5 I * 1 r 5 0  
DO 5 J = 1960 
JJ = 61-J 

DO 20 J z l r 6 0  
EMEAN = 0. 
EMSQ = 0. 

1 READ l O l r  ((D(IrJ)rJ=l*60lrI=lr50) 

5 D ( I , J J )  = D ( I 9 J J )  - D ( I , l )  

DO 10 I = 1 9 5 0  
EMEAN = EMEAN + D ( I r J 1  

EMEAN EMEAN/50. 
EMSQ = EMSQ/SO. 
VAR ((EMSQ - EMEAN++2)+50.)/49. 
SO -i VAR**.5 

10 EMSQ = EMSQ + D ( I , J ) * * 2  

2 0  PUNCH ~O~,J IEMEAN~EMSQIVAR~SD 
GO TO 1 

101 FORMAT (10F7.1) 
1 0 2  FORMAT(12Xr46HDPIFT RATE ENSEMBLE S T A T I S T I C S r Z L R O  CORRECTION///) 
103 FORMAT (4X~4HTIME6Xr4HMEANlZX~3HMSQl2Xr3HVARl3X~2HSDl/) 
104 FORMAT ( 4 X , I 3 r 4 ( 5 X r E l O . 3 ) )  

END 
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C PROGRAM 5 INCR. DRIFT RATE - RUNNING RMS ( T I M E )  

DIMENSION D ( 5 9 1 9  R M S ( 5 9 ) r  TRMS(59)  
DO 10 J=1,59 

10 TRMS(J)  = 0. 
PUNCH 1 0 2  
DO 3 0  N = l * 5 0  
READ 1 0 1 9  I ,  ( D ( J ) r  J=1,59)  
EL = 0. 
DO 20 J = l r 5 9  
EL = E L  + D ( J ) * D ( J )  
DEN = J 
R M S ( J )  = SQRTF(EL/DEN) - 7n .I TRM5I.J) = TRMS(J1 + R M S ( J )  

30  PUNCH 103, 1 ,  ( R M S ( J ) ,  J = l r 5 3 )  
C COMPUTE ENSEMBLt KUNNINU K W ~  

PUNCH 104 
PUNCH 105 
00 40 J ~ l r 5 9  
TRMS(J)  TRMS(J) /50 .  

40 PUNCH 106, JI TRMS(J) 
C A L L  E X I T  

101 FORMAT ( 1 X * I 3 / ( 1 0 F 7 . 1 ) )  
1 0 2  FORMAT (14Xv17HIDR - RUNNING R M S / / / )  

104 FORMAT ( / / / / 1 3 X * 2 6 H I D R  - ENSEMBLE RUNNING RMS/ / / )  
1 0 5  FORMAT (16X*4HTIMESX*3HRMS/)  

1 0 3  FORMAT ( lX ,4HGYR013/ (10F7.2)1  

1 0 6  FORMAT ( 1 6 X * I 3 r 3 X , F 7 . 3 )  
END 
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C PROGRAM 6 INCR. DRIFT RATE - AUTOCORRELATION 

DIMENSION D(59)r S U M ( 2 8 ) r  ESUM(28)  
DO 10 K = 1 9 2 8  

10 ESUM(K)  = 00 
PUNCH 102 
DO 60 N=lr50 
READ 101, I ,  ( D ( J ) r  J=1,59)  
DO 30 K - 1 9 2 8  
J J r 6 0 - K  
DEN=JJ 
SUM( KI-0.  
DO 2 0  JZlrJJ 
JK=J+K- l  
EL=Df  J ) * D (  J K )  

SUM(K) = SUM(K) /DEN 

PUNCH 1 0 3 9  11 SUM(1)  

DO 40 K=1,28 

20 SUM(K) = SUM(K)  + E L  

30 ESUM(K) = ESUM(K) + SUM(K) 

EMSQ = SUM( 1) 

40 SUM‘K) = SUM(K)/EMSQ 
60 PUNCH 1049 ( S U M ( K ) t  K t l r 2 8 )  

C COMPUTE ENSEMBLE AUTOCORRELATIONS 
PUNCH 1 0 5  

PUNCH 106, EMSQ 
PUNCH 107 
EMSQ = ESUM(1)  
DO 50 K=1,28 

KKSK-1 

CALL E X I T  

EMSQ = ESUMf 1 1 / 5 0 .  

‘“ ‘Y(K)rEMSQ 

50  PUNCH 1089 KKI ESUM(K) 

101 FORMAT ( l X r I 3 / ( 1 0 F 7 * 1 ) )  
102 FORMAT (14Xv25HNORMALIZED IDR AUTOCORRSo///) 
103 FORMAT ( l X t 4 H G Y R O I 3 r 6 X ~ 7 H M S I D R  zF6.2) 
104 FORMAT (10F7.2) 
105 FORMAT ( / / / / 1 3 X t 3 4 H N O R M A L I Z E D  ENSEMBLE I D R  AUTOCORRSo///) 
106 FORMAT (4Xv7HMSIDR = F 6 = 2 / / )  
107 FORMAT ( 1 6 X v l O H T I M E  DIFFo5X~lSHAUTOCORRELATION/) 
108 FORMAT ( 1 9 X , I 3 r 1 2 X w F 7 0 3 )  

_ C . . . . , “ .  - ---. . . .. . 

END 
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C PROGRAM 7 INCRo D R I F T  RATE - FREQUENCY D I S T R I B U T I O N  

DIMENSION D ( 5 9 1 ,  KSUM(33)  
DO 1 K t 1 9 3 3  

1 KSUM(K1 00 
PUNCH 1 0 2  
DO 8 L=1,50 

DO 8 J ~ l r 5 9  
I F  ( D ( J ) )  3 r 4 , 4  

3 MI]. 
N=O 
GO TO 5 

N = 1  

2 READ 1019 I, ( D ( J ) ,  J s l r 5 9 )  

4 . M z O  

5 DO 6 K - 1 9 1 7  
KMs 18-K 
KN = 14+K 
BBsK-1 
8 ~ 0 1 5  + o3+BB 
I F  ( A B S F ( D ( J ) )  - 8 )  7 ,6 ,6  

6 CONTINUE 
PUNCH 103, I, D ( J ) r  J 
GO TO 8 

7 KSUM(KM) - KSUMfKM) + M 
KSUM(KN1 - KSUM(KN1 + N 

8 CONTINUE 
PUNCH 104, ( K S U M ( K ) r  K-1,331 
CALL E X I T  

101 FORMAT ( l X ~ I 3 / ( 1 0 F 7 0 1 ) ~  
1 0 2  FORMAT (5X,29HINCRo D R I F T  RATE FREQo D I S T R o / / / )  
103 FORMAT ( l O X 1 1 3 r 4 X , F 7 0 l r 6 X ~ I 3 )  
104 FORMAT ( / / ( 2 0 X , I 4 ) )  

END 
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C PROGRAM 8 D R I F T  RATE C O R R E L A T I O N  

* F A N D K 0 5 0 4  
D I M E N S I O N  D ( 5 0 9 6 0 )  

DO 10 I = l r 5 0  
DO 10 J t l r 6 0  
JJ = 61-J 

PUNCH 102 
DO 30 J=6r41 r5  
N = J-1 
PUNCH 1039 N 
PUNCH 104 
K = 61-J 
DO 30 J J = l , K  
SUMgO 
J K  = J+JJ-2 
DO 20 I t l r 5 0  
E L  = D ( I , J )  * D ( I V J K + l )  

SUM SUM/SO. 

1 READ 101, ( ( D ( I 1 J ) * J = 1 * 6 0 ) r I = 1 , 5 0 )  

10 D ( 1 , J J )  = D ( I ~ J J l - D ( I * l I  

20 SUM = SUM+EL 

30  PUNCH 1 0 5 9  J K p S U M  
GO TO 1 

101 FORMAT (10F7.1) 4 
102 FORMAT ( 1 0 X 9 3 6 H D R I F T  R A T E  ENSEMBLE A U T O C O R R E L A T I O N S / / / )  
103 FORMAT ( / / / 3 X r 1 5 H A C F S  WITH T I M E  1 3 / / )  
104 FORMAT ( ~ X * ~ H T I M E ~ ~ X I ~ H A C F / / )  
105 FORMAT ( ? X , I 3 , 9 X s F 7 . 2 )  

END 
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